Answer to Q-1

Minimum price for making 500 units of AK 100

Materials:	Rs.	
X	$(500$ units $\times 4 \mathrm{~kg}) \times$ Rs. 8	16,000
Y	$(500$ units $\times 6 \mathrm{~kg}) \times$ Rs. 15.08	45,240
Labour:		
Skilled wages	$(500$ units $\times 5$ hours $) \times$ Rs. 8	20,000
Opportunity cost	$(500$ units $\times 5$ hours $) \times$ Rs. 15	37,500
Unskilled	$[(500 \times 3)-900] \times 6 \times 1.5$	5,400
Overheads:		
Variable	$(500$ units $\times 2$ hours $) \times$ Rs. 8.75	8,750
Fixed	Incremental spending	4,000
Machine hire	$(2$ weeks \times Rs.2,650 $)$	5,300
Development costs		1,750
Minimum price		$\mathbf{1 4 3 , 9 4 0} \mathrm{M}-(2)$

Material X

The company has enough kilograms of material X in inventory for the contract. When it is used, the invenory of material X will not be replaced. The relevant cost of the material is therefore its opportunity cost, not its replacement cost. The opportunity cost is the higher of its current sale value (Rs .7 .50 per kg) or the net saving obtained if it is used as a substitute for material Z (Rs. $9.50-\mathrm{Rs} .1 .50=\mathrm{Rs} .8$ per kg). The relevant cost of material X is therefore Rs. 8 per kg. M-(3)

Material Y

Material Y is in regular use, so its relevant cost is its current replacement cost.

	kg	Rs.
Total inventory	10,000	
Purchased six months ago	3,000	$(\times$ Rs.13.75 $)$
Purchased last month	7,000	

Purchase price last month $=$ Rs. $101,500 / 7,000 \mathrm{~kg}=$ Rs. 14.50 per kg .
Current purchase price $=4 \%$ higher $=$ Rs. $14.50 \times 1.04=$ Rs.15.08. $\mathrm{M}-(3)$

Skilled labour

Skilled labour is in short supply. If it is used to make product AK 100, workers will have to be taken off other work. The relevant cost of skilled labour is the wages for the skilled workers for the time spent on AK 100, plus the lost contribution (net of skilled labour cost) from not being able to make units of product B16.

Opportunity cost of skilled labour
Skilled labour cost per unit of Product B16 = Rs. 24
Number of hours per unit $=3$ hours
Contribution per unit of B16 = Rs. 45
Contribution per skilled labour hour from B16 = Rs. 15
Opportunity cost of skilled labour if it is used to make AK $100=(500 \times 5) \times$ Rs. $15=$ Rs.37,500 M-(4)

Unskilled labour

900 unskilled labour will be available at no incremental cost to the company (as it is already being paid and is not fully employed). There is no relevant cost for these hours. The additional 600 hours required will involve extra wage payments, including overtime payments. The relevant cost of these 600 hours is Rs. 6 per hour \times $150 \%=$ Rs. 9 per hour, including the overtime premium. M-(3)

Overheads

Variable overheads are included as relevant costs because they will be additional costs if the units of AK 100 are made. The only incremental fixed costs, however, are the extra cash costs of Rs. 4,000 . The fixed overhead absorption rate is ignored. The additional costs of hiring special finishing machinery are also included as a relevant cost. M-(2)

Development costs

Those costs already incurred are past costs (sunk costs) and are not relevant. The future development costs involve additional expenditure and are included as relevant costs. M-(1)

Answer to Q-2
 Month-wise Cash Budget

WORKING NOTES:

W-1: Calculation of sales and collections

	Aug	Sep	Oct	Nov	Dec
Purchases	600	520	680	640	560
Add: gross profit (25\% of cost)	150	130	170	160	140
Sales - Gross	750	650	850	800	700
Sales to hospitals - 70\%	525	455	595	560	490
Add: sales tax @ 17\%	89.25	77.35	101.15	95.20	83.30
	614.25	532.35	696.15	655.20	573.30
Collection from hospitals- A			614.25	532.35	696.15
Sales to schools - 30\%	225	195	255	240	210
Add: sales tax @ 17\%	38.25	33.15	43.35	40.80	35.70
	263.25	228.15	298.35	280.80	245.70
Collection from schools - B			228.15	298.35	280.8
Total collection ($\mathrm{A}+\mathrm{B}$)			842.40	830.70	976.95
	M-(1)	M-(1)	M-(1)	M-(1)	M-(1)

W-2: Purchases

	Aug	-Rs. in ' 000		Nov	Dec
		Sep	Oct		
Purchases	600	520	680	640	560
Add: Sales Tax @ 17\%	102	88.40	115.60	108.80	95.20
	702	608.40	795.60	748.80	655.20
Payment to creditors:					
10\% - month of purchase			79.56	74.88	65.52
60\%-following month			365.04	477.36	449.28
30\%-second month			210.60	182.52	238.68
			655.20	734.76	753.48
			M-(1)	M-(1)	M-(1)

W-3: Sales tax

	---------------------		Rs. in '000-		
Output tax	Aug	Sep	Oct	Nov	Dec
Less: Input tax	127.50	110.50	144.50	136.00	119.00
S.tax payable / (refundable)	(102.00)	(88.40)	(115.60)	(108.80)	(95.20)
Sales tax payments	25.50	22.10	28.90	27.20	23.80
			22.10	28.90	27.20
			M-(1)	M-(1)	M-(1)

W-4: Calculation of variable Selling expenses

Rs. in ' 000
Selling expenses - Sep $2013 \quad 40$
Less: fixed expenses - 35%
Variable selling expenses 26
Sales for the month of Sep $2013 \quad 650$
Variable selling expenses as a \% of sales $[26 \div 650 \times 100] \quad 4 \%$ M-(2)

Answer to Q-3

CRITICAL PATH

Note:
EET: Earliest Event Time
LET: Latest Event Time
(i) Total float:

	A	B	C	D	E	F	G	H	I	J	K
Latest event Time of head event	7	2	7	11	10	8	10	12	15	12	15
Earliest event time of tail event	(0)	(0)	(0)	(2)	(2)	(2)	(1)	(6)	(10)	(7)	(11)
Duration of activity	(2)	(2)	(1)	(4)	(8)	(5)	(3)	(1)	(5)	(4)	(3)
Total Float	5	0	6	5	0	1	6	5	0	1	1

(ii) Critical path and its duration:

Path

Duration (Months)

A	D	H	K	$(2+4+1+3)$	$=$	10
B	F	J	K	$(2+5+4+3)$	$=$	14
B	E	I		$(2+8+5)$	$=$	15
C	G	I	$(1+3+5)$	$=$	9	

Critical path is B E I and duration is 15 Months. M-(3)

Answer to Q-4 (a)
(a) Optimum production plan

Define the variables
Let $x=$ number of units of Xeno to be produced.
Let $y=$ number of units of Yong to be produced.
Let $C=$ contribution.
State the objective function
$C=30 x+40 y \quad$ M-(1)
State the constraints
Build time: $24 x+20 y \leq 1,800,000$
Program time: $16 x+14 y \leq 1,680,000$
Test time: $10 x+4 y \leq 720,000 \mathrm{M}-(1)$
Non-negativity constraints:
$x, y \geq 0$
Sales constraints
$x \leq 85,000$
$y \leq 66,000$

Draw the graph
Build time:
If $x=0, y=1,800,000 / 20=90,000$
If $y=0, x=1,800,000 / 24=75,000 \quad \mathrm{M}-(0.5)$
Program time:
If $x=0, y=1,680,000 / 14=120,000$
If $y=0, x=1,680,000 / 16=105,000 M-(0.5)$
Test time:
If $x=0, y=720,000 / 4=180,000 \mathrm{M}-(0.5)$
If $y=0, x=720,000 / 10=72,000$
Solve using the iso-contribution line
If $\mathrm{y}=40,000, \mathrm{C}=40,000 \times$ Rs. $40=$ Rs. $1,600,000 \mathrm{M}-(0.5)$
If $\mathrm{C}=$ Rs. $1,600,000$ and $\mathrm{y}=0, \mathrm{x}=$ Rs. $1,600,000 / \mathrm{Rs} .30=53,333 \cdot 33$

Moving the iso-contribution line out to the furthest point on the feasible region, the optimum production point is b. This is the intersection of the build time constraint and the sales constraint for y. Solving the simultaneous equations for these two constraints:

```
\(y=66,000 \mathrm{M}-(1)\)
\(24 x+20 y=1,800,000\)
\(24 x+(20 x 66,000)=1,800,000\)
\(24 x+1,320,000=1,800,000\)
\(24 x=480,000\)
\(x=20,000 \mathrm{M}-(1)\)
```

$C=(20,000 \times R s, 30)+(66,000 \times R s, 40)$
$=R s, 600,000+R s, 2,640,000=R s, 3,240,000$
Fixed costs $=3 \times$ Rs, $650,000=$ Rs, 1,950,000.
Therefore profit $=$ Rs, 1,290,000. M-(1)

Answer to Q-4 (b)

Sales price operational variance: (actual price - market price) x actual quantity
Commodity 3: (Rs. $40 \cdot 40$ - Rs.39•10) x $25,600=$ Rs. $33,280 \mathrm{~F}$
Sales price planning variance: (standard price - market price) x actual quantity Commodity 3 :
(Rs. $41 \cdot 60-$ Rs. $39 \cdot 10$) x $25,600=$ Rs. $(64,000) \mathrm{A}$
An alternative approach to the variance calculations for Commodity 3 would be as follows: Sales price operational variance

Commodity 3
Should now
Rs.39. 10
Did
Rs. $40 \cdot 40$
Difference
Rs.1•30F

Actual sales quantity 25,600

Variance
Rs.33,280F M-(2)
Sales price planning variance

Commodity 3

Should now Rs.39•10
Should Rs.41.60
Difference Rs.2.50A
Actual sales quantity $\quad 25,600$
Variance
Rs.64,000A M-(2)

(b) Sales mix variance:

(Actual sales quantity in actual mix at standard margin) - (actual sales quantity in standard mix at standard margin) $=$ Rs. $768,640(\mathrm{w} .1 \& 2)$ - Rs.782,006 (w.3) = Rs.13,366 adverse. M-(1)
Working 1: Standard margins per unit:
Budgeted machine hours $=(30,000 \times 0 \cdot 2)+(28,000 \times 0 \cdot 6)+(26,000 \times 0 \cdot 8)=43,600$. Overhead absorption rate $=$ Rs. $174,400 / 43,600=$ Rs. 4 per hour. M-(1.5)

Product	Commodity Rs.	Commodity 2 Rs.	Commodity Rs.
Standard selling price	30	35	$41 \cdot 60$
Variable production costs	(18)	(28.40)	(26.40)
Fixed production overheads	(0.8)	(2.4)	(3.2)
Standard profit margin	11.20 M	0.5) $4 \cdot 20 \mathrm{M}-(0.5)$	12 M

Working 2: Actual sales quantity in actual mix at standard profit margin:

Product
Commodity 1
Commodity 2
Commodity 3

Actual quantity
in actual mix
29,800
30,400 25,600

Standard profit
Rs. $11 \cdot 20$
Rs. 12

85,800 M-(0.5)

Rs.

333,760
127,680
307,200

768,640 M-(0.5)
Working 3 Actual sales quantity in standard mix at standard profit margin:

Product	Actual quantity in standard mix	Standard profit	Rs.
Commodity 1	85,800 x 30/84 $=30,643$	Rs.11.20	343,202
Commodity 2	$85,800 \times 28 / 84=28,600$	Rs. $4 \cdot 20$	120,120
Commodity 3	$85,800 \times 26 / 84=26,557$	Rs. 12	318,684
	85,000M-(0.5)		782,006 M-(0.5)

The sales quantity variance $=($ actual sales quantity in standard mix at standard margin) - (budgeted sales quantity in standard mix at standard profit margin) = Rs.782,006 (w. 3 above) - Rs.765,600 (w.4) = Rs.16,406 favourable. M-(1)

Working 4: Budgeted sales quantity in standard mix at standard profit margin:

Product	Quantity	Standard profit	Rs.
Commodity 1	30,000	Rs. 11.20	336,000
Commodity 2	28,000	Rs.4•20	117,600
Commodity 3	26,000	Rs. 12	312,000
	84,000 M-(0.5)		765,600 M-(0.5)

Answer to Q-5

Gross quantity of input material required to be procured

Total output
4,800 tonnes
Add-Scrap
Moulding Dept. -5\%
Machining Dept. -10\%

4,800 tonnes	
240 tonnes	
480 tonnes	
$\mathbf{5 , 5 2 0}$ tonnes	M-(2)

Selection of sources of supplier and price, at which the inputs are to be procured
Comparative cost of procurement

Sources	Korea	China	Taiwan
Quantity to be supplied (tonnes)	3,600	4,000	5520 (entire qty.)
Price (Rs. Million/tonne)	0.30	0.275	0.32500
Less discount 5\%	-	-	0.01625
Net Price	$\mathbf{0 . 3 0}$	$\mathbf{0 . 2 7 5}$	$\mathbf{0 . 3 0 8 7 5}$
Add Transport	0.01	0.015	-
Landed Cost	$\mathbf{0 . 3 1}$	$\mathbf{0 . 2 9}$	$\mathbf{0 . 3 0 8 7 5}$
	$\mathrm{M}-(1)$	$\mathrm{M}-(1)$	$\mathrm{M}-(1)$

The material accordingly will be procured as under

	Rs/ Million
From China - 4,000 @ Rs. 0.29 million / tone	1160.00
From Korea - 1,520 tonne @ Rs. 0.31 million / tone	471.20
$\mathbf{5 , 5 2 0}$	$\mathbf{1 6 3 1 . 2 0}$

Average cost/ tonne being 0.2955 million. Therefore Taiwan is costliest source, so it is ignored.

Computation of annual profitability			
		Total 4,800 / tonne Rs. / million	Per tonne Rs.
		1418.40	295,000
Material Cost @ 0.2955 / tone		212.76	44,325
		M-(1)	$\mathbf{1 6 3 1 . 1 6}$

Less: Realizable Value of Scrap

Moulding Dept: (4.800 x 0.05) tonne @ Rs. 75,000/tonne Machine Dept: (4.800×0.10) tonne @ Rs. 100,000 / tonne
Net material cost
M-(2)

Labour:

Moulding Dept.
Machining Dept.

(18.00)	$(3,750)$
(48.00)	
$\mathbf{1 5 6 5 . 1 6}$	$\mathbf{3 2 6 , 0 7 5}$
8.00	1,667
24.00	5,000
$\mathbf{3 2 . 0 0}$	$\mathbf{6 , 6 6 7}$

Overhead:

Moulding Dept.		32.00	6,667
Machining Dept.	M-(1)	72.00	15,000
		104.00	21,667
Total cost of production	$\mathbf{1 7 0 1 . 1 6}$	$\mathbf{3 5 4 , 4 0 9}$	
Distribution cost (15\% of production cost) M-(1)	255.174	53,161	
Total Cost	$\mathbf{1 9 5 6 . 3 3 4}$	$\mathbf{4 0 7 , 5 7 0}$	

Sales realization

| Northern Zone: 3,000 tonne @ Rs. 750,000/tonne |
| :--- | ---: | :---: |
| Southern Zone 1,800 tonne @Rs.1,000,000/tonne |
| M-(1) |\quad| 2,250.000 | - |
| ---: | ---: |
| | |
| | |
| Profit | M-(1) |

Answer to Q-6

a)

The situation is governed by the actions of the manager of BB. Based on a transfer price of Rs. 45 per component, the total variable cost per unit of Product B will be Rs.54. M-(1)

| Demand | SP | | VCCont per unit
 Rs. | Total contribution
 Rs. |
| :--- | :---: | :---: | :---: | :---: | Rs.

BB will produce 4,000 units of Product B and will therefore order 4,000 of Component A from AA. M-(1)

	AA	BB	ZZ Group
	Rs.	Rs.	Rs.
Revenue	180,000	360,000	$360,000 \mathrm{M}-(1)$
Variable costs	60,000	216,000	$96,000 \mathrm{M}-(1)$
Fixed costs	50,000	75,000	$125,000 \mathrm{M}-(1)$
Profit	70,000	69,000	$139,000 \mathrm{M}-(1)$

(b)

If marginal cost is used as the transfer price the manager of the AA division will not be motivated as there will be no contribution towards the division's fixed costs. The calculations above show that if marginal cost is used as the transfer price AAdivision will record a loss i.e. the size of the fixed costs. If the divisional performance measure is Return on Capital Employed the AA division will be at a disadvantage compared to the BB division.

However using marginal cost as the transfer price will maximise the overall group profit. Therefore there is conflict between 'group' and 'division'. The situation could be overcome by the use of a 'dual pricing' system or a 'two-part tariff' approach.

Dual pricing transfer pricing

A dual rate transfer price uses two separate transfer prices to price each inter-divisional transaction e.g. the supplying division may receive the full cost, plus a mark-up on each transaction and the receiving division may be charged at the marginal cost of each of the transfers. The supplier transfer price is intended to match the market price of the goods or services transferred. The mark-up for the supplying division is assumed to be sufficient to cover its fixed costs and also provide a profit contribution.

This method of transferring with the receiving division being charged at the marginal cost of the supplying division, should ensure that decisions are made that are optimal from the group's perspective. This approach should also meet the performance evaluation of the supplying division since each unit transferred generates a profit. For this reason the supplying division manager is motivated to transfer the product internally.

The outcome of this approach will show the contribution for the group as a whole is less than the sum of the divisional profits. This can be resolved quite simply by a head office accounting adjustment.

Two-part tariff transfer pricing
This approach applies particularly where the supplying division has no capacity constraints. All transfers are made at the short-term marginal cost. The supplying division also charges the receiving division a fixed fee for the privilege of obtaining these transfers at the marginal cost.

The receiving division equates its marginal costs to its marginal revenue to determine the optimum profitmaximizing output level.
The supplying division can recover its fixed costs and earn a profit on the inter-divisional transfers through the fixed fee each period. The fixed fee is intended to compensate the supplying division for tying up some of its capacity for providing products or services that are transferred internally.

The fee is meant to cover a representative portion of the supplying division's fixed cost, plus a further charge to reflect the required return on capital.

Another possibility could be 'a negotiated transfer price'.

(The End)

