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LEARNING OBJECTIVESLEARNING OBJECTIVESLEARNING OBJECTIVESLEARNING OBJECTIVESLEARNING OBJECTIVES

Often students will come across a sequence of numbers which are having a common difference,
i.e., difference between the two consecutive pairs are the same. Also another very common
sequence of numbers which are having common ratio, i.e., ratio of two consecutive pairs are the
same. Could you guess what these special type of sequences are termed in mathematics?

Read this chapter to understand that these two special type of sequences are called Arithmetic
Progression and Geometric Progression respectively. Further learn how to find out an element
of these special sequences and how to find sum of these sequences.

These sequences will be useful for understanding various formulae of accounting and finance.

The topics of sequence, series, A.P., G.P. find useful applications in commercial problems among
others; viz., to find interest earned on compound interest, depreciations after certain amount of
time and total sum on recurring deposits, etc.

 6.1 SEQUENCE 6.1 SEQUENCE 6.1 SEQUENCE 6.1 SEQUENCE 6.1 SEQUENCE
Let us consider the following collection of numbers-
(1) 28 , 2, 25, 27, ————————
(2) 2 , 7, 11, 19, 31, 51, —————
(3) 1, 2, 3, 4, 5, 6, ———————
(4) 20, 18, 16, 14, 12, 10, —————

In (1) the nos. are not arranged in a particular order. In (2) the nos. are in ascending order but
they do not obey any rule or law. It is, therefore, not possible to indicate the number next to 51.

In (3) we find that by adding 1 to any number, we get the next one. Here the no. next to 6 is
(6 + 1 = ) 7.

In (4) if we subtract 2 from any no. we get the nos. that follows. Here the no. next to 10 is
(10 –2 =) 8.

Under these circumstances, we say, the nos. in the collections (1) and (2) do not form sequences
whereas the nos. in the collections (3) & (4) form sequences.

Thus a sequence may be defined as follows:—

An ordered collection of numbers aAn ordered collection of numbers aAn ordered collection of numbers aAn ordered collection of numbers aAn ordered collection of numbers a11111, a, a, a, a, a22222, a, a, a, a, a33333, a, a, a, a, a44444, ................., a, ................., a, ................., a, ................., a, ................., annnnn, ................. is a sequence if according, ................. is a sequence if according, ................. is a sequence if according, ................. is a sequence if according, ................. is a sequence if according
to some definite rule or law, there is a definite value of ato some definite rule or law, there is a definite value of ato some definite rule or law, there is a definite value of ato some definite rule or law, there is a definite value of ato some definite rule or law, there is a definite value of an , n , n , n , n , called the term or element of thecalled the term or element of thecalled the term or element of thecalled the term or element of thecalled the term or element of the
sequence, corresponding to any value of the natural no. n.sequence, corresponding to any value of the natural no. n.sequence, corresponding to any value of the natural no. n.sequence, corresponding to any value of the natural no. n.sequence, corresponding to any value of the natural no. n.

Clearly, a1 is the 1st term of the sequence , a2 is the 2nd term, ................., an is the nth term.

In the nth term an , by putting n = 1, 2 ,3 ,......... successively , we get a1, a2 , a3 , a4, .........

Thus it is clear that the nth term of a sequence is a function of the positive integer n. The nth term
is also called the general term of the sequence. To specify a sequence, nth term must be known,
otherwise it may lead to confusion. A sequence may be finite or infinite.

If the number of elements in a sequence is finite, the sequence is called finite sequence; while if the
number of elements is unending, the sequence is infinite.....
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A finite sequence a1, a2, a3, a4, ................., an is denoted by { }n

i i=1
a  and  an  infinite  sequence a1, a2,

a3, a4, ................., an ,................. is denoted by { }∞n n=1
a  or simply by

{ an } where an is the nth element of the sequence.

Example :Example :Example :Example :Example :
1) The sequence { 1/n } is 1, 1/2 , 1/3 , 1/4 ,……
2) The sequence { ( – 1 ) n n } is –1, 2, –3, 4, –5,…..
3) The sequence { n } is 1, 2, 3,…
4) The sequence { n / (n + 1) } is 1/2, 2/3, 3/4 , 4/5, …….
5) A sequence of even positive integers is 2, 4, 6, .....................................
6) A sequence of odd positive integers is 1, 3, 5, 7, .....................................

All the above are infinite sequences.

Example:Example:Example:Example:Example:

1) A sequence of even positive integers within 12 i.e., is 2, 4, 6, 10.

2) A sequence of odd positive integers within 11 i.e., is 1, 3, 5, 7, 9. etc.

All the above are finite sequences.

 6.2 SERIES 6.2 SERIES 6.2 SERIES 6.2 SERIES 6.2 SERIES
An expression of the form a1 + a2 + a3 + ….. + an + ............................ which is the sum of the
elements of the sequenece { an } is called a series. If the series contains a finite number of elements,
it is called a finite series, otherwise called an infinite series.

If Sn = u1 + u2 + u3 + u4 + ……. + un, then Sn is called the sum to n terms (or the sum of the first
n terms ) of the series and is denoted by the Greek  letter sigma ∑.

Thus,       Sn = ∑
n

r=1
ur or simply by ∑un.

Illustrations Illustrations Illustrations Illustrations Illustrations :

(i) 1 + 3 + 5 + 7 + ............................ is a series in which 1st term = 1, 2nd term = 3 , and so on.

(ii) 2 – 4 + 8 –16 + ............................ is also a series in which 1st term = 2, 2nd term = –4 , and so on.

 6.3 ARITHMETIC PROGRESSION (A.P.) 6.3 ARITHMETIC PROGRESSION (A.P.) 6.3 ARITHMETIC PROGRESSION (A.P.) 6.3 ARITHMETIC PROGRESSION (A.P.) 6.3 ARITHMETIC PROGRESSION (A.P.)
A sequence a1, a2 ,a3, ……, an is called an Arithmetic Progression (A.P.) when a2 – a1 = a3 – a2 = …..
= an – an–1. That means A. P. is a sequence in which each term is obtained by adding a constant d
to the preceding term. This constant ‘d’ is called the common difference of the A.P. If 3 numbers a,
b, c are in A.P., we say

b – a = c – b or a + c = 2b; b is called the arithmetic mean between a and c.

Example:Example:Example:Example:Example: 1)1)1)1)1) 2,5,8,11,14,17,…… is an A.P. in which d = 3 is the common diference.
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2)2)2)2)2) 15,13,11,9,7,5,3,1,–1, is an A.P. in which –2 is the common difference.
Solution:Solution:Solution:Solution:Solution: In (1) 2nd term = 5 , 1st term = 2, 3rd term = 8,
so 2nd term – 1st term = 5 – 2 = 3, 3rd term – 2nd term = 8 – 5 = 3
Here the difference between a term and the preceding term is same that is always constant. This
constant is called common difference.
Now in generel an A.P. series can be written as

a, a + d, a + 2d, a + 3d, a + 4d, ……
where ‘a’ is the 1st term and ‘d’ is the common difference.
Thus 1st term ( t1 ) = a = a + ( 1 – 1 ) d

2nd term ( t2 ) = a + d = a + ( 2 – 1 ) d

3rd term ( t3 ) = a + 2d = a + ( 3 – 1 ) d

4th term ( t4 ) = a + 3d = a + ( 4 – 1 ) d

…………………………………………….

nth term ( tn ) = a + ( n – 1 ) d, where n is the position no. of the term .

Using this formula we can get

50th term (= t50) = a+ ( 50 – 1 ) d = a + 49d

Example 1: Example 1: Example 1: Example 1: Example 1:  Find the 7th term of the A.P. 8, 5, 2, –1, –4,…..

Solution :Solution :Solution :Solution :Solution : Here     a = 8, d = 5 – 8 = –3

Now    t7 = 8 + ( 7 – 1 ) d

= 8 + ( 7 – 1 ) (– 3 )

= 8 + 6 (– 3 )

= 8 – 18

= – 10

Example 2 :Example 2 :Example 2 :Example 2 :Example 2 : Which term of the AP 
3 4 5 17

, , ............is ?
7 7 7 7

Solution : Solution : Solution : Solution : Solution :  a = - n

3 4 3 1 17
, d = = , t =

7 7 7 7 7

We may write

n(+ ´
17 3 1

= - 1)
7 7 7

or, 17 = 3 + ( n – 1)
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or, n = 17 – 2 = 15

Hence, 15th term of the A.P. is .
17

7

ExamplExamplExamplExamplExample 3:e 3:e 3:e 3:e 3: If 5th and 12th terms of an A.P. are 14 and 35 respectively, find the A.P.

Solution: Solution: Solution: Solution: Solution:  Let a be the 1st term & d be the common difference of A.P.

t5 = a + 4d = 14

t12 = a + 11d = 35

On solving the above two equations:

7d = 21   = i.e., d = 3

and a = 14 – (4 × 3) = 14 – 12 = 2

Hence, the required A.P. is 2, 5, 8, 11, 14,……………

Example 4:Example 4:Example 4:Example 4:Example 4: Divide 69 into three parts which are in A.P. and are such that the product of the 1st

two parts is 483.

Solution: Solution: Solution: Solution: Solution:  Given that the three parts are in A.P., let the three parts which are in A.P. be a – d, a,
a + d.........

Thus a – d + a + a + d = 69

or 3a = 69

or a = 23

So the three parts are 23 – d, 23, 23 + d

Since the product of first two parts is 483, therefore, we have

23 ( 23 – d ) = 483

or 23 – d = 483 / 23 = 21

or d = 23 – 21 = 2

Hence, the three parts which are in A.P. are

23 – 2 = 21, 23, 23 + 2 = 25

Finally the parts are 21, 23, 25.

Example 5Example 5Example 5Example 5Example 5: Find the arithmetic mean between 4 and 10.

Solution:Solution:Solution:Solution:Solution: We know that the A.M. of a & b is = ( a + b ) /2

Hence, The A. M between 4 & 10 = ( 4 + 10 ) /2 = 7
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Example 6:Example 6:Example 6:Example 6:Example 6: Insert 4 arithmetic means between 4 and 324.

4, –, –, –, –, 324

Solution:Solution:Solution:Solution:Solution: Here a= 4, d = ? n = 2 + 4 = 6, tn = 324
Now tn = a + ( n – 1 ) d
or 324= 4 + ( 6 – 1 ) d
or 320= 5d i.e., = i.e., d = 320 / 5 = 64
So the 1st AM = 4 + 64 = 68

2nd AM = 68 + 64 = 132
3rd AM = 132 + 64 = 196
4th AM = 196 + 64 = 260

Sum of the firstSum of the firstSum of the firstSum of the firstSum of the first      n terms n terms n terms n terms n terms

Let S be the Sum, a be the 1st term and � the last term of an A.P. If the number of term are n, then
tn = �. Let d be the common difference of the A.P.

Now S = a + ( a + d ) + ( a + 2d ) + .. + ( � – 2d ) + ( � – d ) + �

Again S = � + ( � – d ) + ( � – 2d ) + …. + ( a + 2d ) + ( a + d ) + a

On adding the above, we have

2S = ( a + � ) + ( a + � ) + ( a + � ) + …… + ( a + � )

= n( a + � )
or S = n( a + � ) / 2

Note:Note:Note:Note:Note: The above formula may be used to determine the sum of n terms of an A.P. when the first
term a and the last term is given.

Now l = tn = a + ( n – 1 ) d

∴
n{a + a + (n - 1)d}

S =
2

or { }n
s = 2a +(n - 1)d

2

Note:Note:Note:Note:Note: The above formula may be used when the first term a, common difference d and the number
of terms of an A.P. are given.
Sum of 1Sum of 1Sum of 1Sum of 1Sum of 1ststststst n natural or counting numbers n natural or counting numbers n natural or counting numbers n natural or counting numbers n natural or counting numbers

S = 1 +      2 + 3 + ……. +……. ( n – 2 ) + ( n – 1 ) + n
Again S = n + ( n – 1 ) + ( n – 2 )   + ……… +      3 + 2 + 1
On adding the above, we get

2S = ( n + 1 ) + ( n + 1 ) +....... to n terms

or 2S = n ( n + 1 )

S = n( n + 1 )/2
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Then Sum of 1st, n natural number is n( n + 1 ) / 2

i.e. 1 + 2 + 3 + ........ + n = 
n(n + 1)

2
.

Sum of 1Sum of 1Sum of 1Sum of 1Sum of 1ststststst n odd number n odd number n odd number n odd number n odd number
S = 1 + 3 + 5 + …… + ( 2n – 1 )

Sum of 1st n odd number
S = 1 + 3 + 5 + …… + ( 2n – 1 )
Since S = n{ 2a + ( n –1 ) d } / 2, we find

S =  
n

2
{ 2.1 + ( n – 1 ) 2 }  =

n

2
( 2n ) n2

or S = n2

Then sum of 1st, n odd numbers is n2, i.e. 1 + 3 + 5 + ..... + ( 2n – 1 ) = n2

Sum of the Squares of the 1Sum of the Squares of the 1Sum of the Squares of the 1Sum of the Squares of the 1Sum of the Squares of the 1ststststst, n natural nos., n natural nos., n natural nos., n natural nos., n natural nos.
Let S = 12 + 22 + 32 + …… + n2

We know m3 – ( m – 1 ) 3 = 3m2 – 3m + 1
We put m = 1, 2, 3,……,n

13 – 0 = 3.12 – 3.1 + 1
23 – 13 = 3.22 – 3.2 + 1
33 – 23 = 3.32 – 3.3 + 1
…………………………..

+ n3 – ( n – 1 ) 3 = 3n2 – 3.n + 1

Adding both sides term by term,

n3 = 3S – 3 n ( n + 1 ) / 2 + n
or 2n3 = 6S – 3n2 – 3n + 2n
or 6S = 2n3 + 3n2 + n
or 6S = n ( 2n2 + 3n + 1 )
or 6S = n ( n + 1 ) ( 2n + 1 )

S = n( n + 1 )( 2n + 1 ) / 6

Thus sum of the squares of the 1Thus sum of the squares of the 1Thus sum of the squares of the 1Thus sum of the squares of the 1Thus sum of the squares of the 1ststststst, n natural numbers is , n natural numbers is , n natural numbers is , n natural numbers is , n natural numbers is 
n(n +1) (2n +1)

6

i.e. 12 + 22 + 32 + ........ + n2 = 
n(n +1) (2n +1)

6
.

Similarly, sum of the cubes of 1st n natural number can be found out as 
 
 
 

2
n(n +1)

2
 by taking

the identity
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m4 – ( m – 1 ) 4 = 4m3 – 6m2 + 4m – 1 and putting m = 1, 2, 3,…., n.

Thus

13 + 23 + 33 + …. + n3 = 
 
 
 

2
n(n +1)

2

Exercise 6 (A)Exercise 6 (A)Exercise 6 (A)Exercise 6 (A)Exercise 6 (A)

Choose the most appropriate option ( a ), ( b ) , ( c ) or (d)Choose the most appropriate option ( a ), ( b ) , ( c ) or (d)Choose the most appropriate option ( a ), ( b ) , ( c ) or (d)Choose the most appropriate option ( a ), ( b ) , ( c ) or (d)Choose the most appropriate option ( a ), ( b ) , ( c ) or (d)

1. The nth element of the sequence 1, 3, 5, 7,….…..Is
(a) n (b) 2n – 1 (c) 2n +1 (d) none of these

2. The nth element of the sequence –1, 2, –4, 8 ….. is
(a) ( –1 )n2 n–1 (b) 2 n–1 (c) 2n (d) none of these

3.

(a) 7 + 9 + 11+ 13 (b) 72 + 92 + 112 + 132

(c) 72 + 92 + 112 + 132 (d) none of these.

4. –5, 25, –125 , 625, ….. can be written as

(d) none of these

5. The first three terms of sequence when nth term tn is n2 – 2n are
(a) –1, 0, 3 (b) 1, 0, 2 (c) –1, 0, –3 (d) none of these

6. Which term of the progression –1, –3, –5, …. Is –39
(a) 21st (b) 20th (c) 19th (d) none of these

7. The value of x such that 8x + 4, 6x – 2, 2x + 7 will form an AP is
(a) 15 (b) 2 (c) 15/2               (d) none of the these

8. The mth term of an A. P. is n and nth term is m. The r th term of it is
(a) m + n +r (b) n + m – 2r (c) m + n + r/2 (d) m + n – r

9. The number of the terms of the series 10 + 
2

9
3

+ 
1

9
3

 + 9 + ............will amount to 155 is

(a) 30 (b) 31 (c) 32 (d) none of these

10. The nth term of the series whose sum to n terms is 5n2 + 2n is
(a) 3n – 10 (b) 10n – 2 (c) 10n – 3 (d) none of these

11. The 20th term of the progression 1, 4, 7, 10.................is
(a) 58 (b) 52 (c) 50 (d) none of these

12. The last term of the series 5, 7, 9,….. to 21 terms is
(a) 44 (b) 43 (c) 45 (d) none of these

(a)
∝

∑
k =1

k(-5) (b) 
∝

∑
k =1

k5 (c)
∝

∑ −

k =1

k5

∑
7

i=4
2i -1  can be written as
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13. The last term of the A.P. 0.6, 1.2, 1.8,… to 13 terms is
(a) 8.7 (b) 7.8 (c) 7.7 (d) none of these

14. The sum of the series 9, 5, 1,…. to 100 terms is
(a) –18900 (b) 18900 (c) 19900 (d) none of these

15. The two arithmetic means between –6 and 14 is

(a) 2/3, 1/3 (b) 2/3, 
1

7
3

(c) – 2/3, 
1

– 7
3

(d) none of these

16. The sum of three integers in AP is 15 and their product is 80. The integers are
(a) 2, 8, 5 (b) 8, 2, 5 (c) 2, 5, 8 (d) 8, 5, 2

17. The sum of n terms of an AP is 3n2 + 5n. The series is
(a) 8, 14, 20, 26 (b) 8, 22, 42, 68 (c) 22, 68, 114, .... (d) none of these

18. The number of numbers between 74 and 25556 divisible by 5 is
(a) 5090 (b) 5097 (c) 5095 (d) none of these

19. The pth term of an AP is (3p – 1)/6. The sum of the first n terms of the AP is
(a) n (3n + 1) (b) n/12 (3n + 1) (c) n/12 (3n – 1) (d) none of these

20. The arithmetic mean between 33 and 77 is
(a) 50 (b) 45 (c) 55 (d) none of these

21. The 4 arithmetic means between –2 and 23 are
(a) 3, 13, 8, 18 (b) 18, 3, 8, 13 (c) 3, 8, 13, 18 (d) none of these

22. The first term of an A.P is 14 and the sums of the first five terms and the first ten terms are
equal is magnitude but opposite in sign. The 3rd term of the AP is

(a) 
4

6
11

(b) 6 (c) 4/11 (d) none of these

23. The sum of a certain number of terms of an AP series –8, –6, –4, …… is 52. The number of
terms is
(a) 12 (b) 13 (c) 11 (d) none of these

24. The 1st and the last term of an AP are –4 and 146. The sum of the terms is 7171. The number
of terms is
(a) 101 (b) 100 (c) 99 (d) none of these

25. The sum of the series 3 ½ + 7 + 10 ½ + 14 + …. To 17 terms is
(a) 530 (b) 535 (c) 535 ½ (d) none of these

 6.4  GEOMETRIC PROGRESSION (G.P.) 6.4  GEOMETRIC PROGRESSION (G.P.) 6.4  GEOMETRIC PROGRESSION (G.P.) 6.4  GEOMETRIC PROGRESSION (G.P.) 6.4  GEOMETRIC PROGRESSION (G.P.)
If in a sequence of terms each term is constant multiple of the proceeding term, then the sequence
is called a Geometric Progression (G.P). The constant multiplier is called the common ratio

Examples:Examples:Examples:Examples:Examples: 1) In 5, 15, 45, 135,….. common ratio is 15/5 = 3

2) In 1, 1/2 , 1/4 , 1/8, … common ratio is (½) /1=½

3) In 2, –6, 18, –54, …. common ratio is (–6) / 2 =–3
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Illustrations:Illustrations:Illustrations:Illustrations:Illustrations:  Consider the following series :–

(i) 1 + 4 + 16 + 64 + …………….

Here second term / 1st term = 4/1 = 4; third term / second term = 16/4 = 4

fourth term/third term = 64/16 = 4 and so on.

Thus, we find that, in the entire series, the ratio of any term and the term preceding it, is a
constant.

(ii) 1/3 – 1/9 + 1/27 – 1/81 + ………….

Here second term / 1st term = (–1/9) / ( 1/3) = –1/3

third term / second term = ( 1/27 ) / ( –1/9 ) = –1/3

fourth term / third term = ( –1/81 ) / (1/27 ) = –1/3 and so on.

Here also, in the entire series, the ratio of any term and the term preceding one is constant.

The above mentioned series are known as Geometric Series.Geometric Series.Geometric Series.Geometric Series.Geometric Series.

Let us consider the sequence a, ar, ar2, ar3, ….
1st term = a, 2nd term = ar = ar 2–1, 3rd term = ar2 = ar3–1, 4th term = ar3 = ar 4 –1, …..

Similarly nth term of GP tn  = ar n–1

Thus, common ratio = 
n

n-1

Any term t
=

Preceding term t

= ar n–1/ar n–2 = r

Thus, general term of a G.P is given by ar n–1 and the general form of G.P. is

a + ar + ar2 + ar3 +……. ….

For example, r = 
2

1

t ar
=

t a

So r = 
32 4

1 2 3

tt t
= = =....

t t t

Example 1: Example 1: Example 1: Example 1: Example 1: If a, ar, ar2, ar3, …. be in G.P. Find the common ratio.

Solution:Solution:Solution:Solution:Solution:  1st term = a, 2nd term = ar

Ratio of any term to its preceding term = ar/a = r = common ratio.

Example 2: Example 2: Example 2: Example 2: Example 2: Which term of the progression 1, 2, 4, 8,… is 256?

Solution :Solution :Solution :Solution :Solution : a = 1, r = 2/1 = 2, n = ? tn = 256

tn = ar n–1

or 256 = 1 × 2 n–1 i.e., 28 = 2 n–1 or, n – 1 = 8 i.e., n = 9
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Thus 9th term of the G. P. is 256

 6.5 GEOMETRIC MEAN 6.5 GEOMETRIC MEAN 6.5 GEOMETRIC MEAN 6.5 GEOMETRIC MEAN 6.5 GEOMETRIC MEAN
If a, b, c are in G.P we get b/a = c/b => b2 = ac, b is called the geometric mean between a
and c

Example 1: Example 1: Example 1: Example 1: Example 1: Insert 3 geometric means between 1/9 and 9.

Solution:Solution:Solution:Solution:Solution: 1/9, –, –, –, 9

a = 1/9, r = ?, n = 2 + 3 = 5, tn = 9

we know tn = ar n–1

or 1/9 × r 5–1 = 9

or r4 = 81 = 34 => r = 3

Thus 1st G. M = 1/9 × 3 = 1/3

2nd G. M = 1/3 × 3 = 1

3rd G. M = 1× 3 = 3

Example 2: Example 2: Example 2: Example 2: Example 2: Find the G.P where 4th term is 8 and 8th term is 128/625

Solution :Solution :Solution :Solution :Solution : Let a be the 1st term and r be the common ratio.

By the question t4 = 8 and t8 = 128/625

So ar3 = 8 and ar7 = 128 / 625

Therefore ar7 / ar3 = 
´

128

625 8
 => r4 = 16 / 625 =( +2/5 )4 => r = 2/5 and –2 /5

Now ar3 = 8 => a × (2/5) 3 = 8 => a = 125

Thus the G. P is

125, 50, 20, 8, 16/5, ………..

When r = –2/5 , a = –125 and the G.P is –125, 50, –20, 8, –16/5 ,………

Finally, the G.P. is 125, 50, 20, 8, 16/5, ………..

or, –125, 50, –20, 8, –16/5,………

Sum of first n terms of a G PSum of first n terms of a G PSum of first n terms of a G PSum of first n terms of a G PSum of first n terms of a G P

Let a be the 1st term and r be the common ratio. So the 1st n terms are a, ar, ar2, …... ar n–1.

If S be the sum of n terms,

        Sn = a + ar + ar2 + ……+ ar n–1 ........................................... (i)

Now rSn = ar + ar2 + ….. + ar n–1 + arn ..................................... (ii)
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Subtracting (i) from (ii)

Sn – rSn = a – ar n

or    Sn(1 – r) = a (1 – rn)

or Sn = a ( 1 – rn) / ( 1 – r ) when r < 1

Sn = a ( rn – 1 ) / ( r – 1 ) when r > 1

If r = 1 , then Sn = a + a + a+ ……….. to n terms

= na

If the nth term of the G. P be l then  � = arn–1

Therefore, Sn = (arn –a ) / (r – 1) = (a rn –1 r –a) / (r – 1) = 
l r - a

r - 1

So, when the last term of the G. P is known, we use this formula.

Sum of infinite geometric seriesSum of infinite geometric seriesSum of infinite geometric seriesSum of infinite geometric seriesSum of infinite geometric series

S = a ( 1 – rn ) / (1 – r) when r < 1

= a (1 – 1/Rn) / ( 1 – 1/R ) (since r < 1 , we take r = 1/R).

If n →→→→→ ∝ , 1/Rn →→→→→ 0

Thus µ

a
S = , r < 1

1 – r

i.e. Sum of G.P. upto infinity is  
a

1 – r
, where r < 1

Also, µ

a
S = ,

1 – r
 if -1<r<1.

Example 1:Example 1:Example 1:Example 1:Example 1: Find the sum of 1 + 2 + 4 + 8 + … to 8 terms.,

Solution:Solution:Solution:Solution:Solution: Here a = 1, r = 2/1 = 2 , n = 8

Let    S = 1 + 2 + 4 + 8 + …… to 8 terms

= 1 ( 28 – 1 ) / ( 2 – 1 ) = 28 – 1 = 255

Example 2: Example 2: Example 2: Example 2: Example 2: Find the sum to n terms of 6 + 27 + 128 + 629 + …….

Solution:Solution:Solution:Solution:Solution: Required Sum= ( 5 + 1 ) + ) (52 + 2 ) + ( 53 +3 ) ( 54 + 4 ) + … to n terms

= ( 5 + 52 +53 + …… + 5n ) + ( 1 + 2 + 3 + .. + n terms)

= {5 ( 5n – 1 ) / (5 – 1 )} + {n ( n + 1 ) / 2}

= {5 ( 5n – 1 ) /4} + {n ( n + 1 ) / 2}

Example 3:Example 3:Example 3:Example 3:Example 3: Find the sum to n terms of the series
3 + 33 + 333 + …….
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Solution: Solution: Solution: Solution: Solution: Let S denote the required sum.

i.e. S = 3 + 33 + 333 + ………….. to n terms
= 3 (1 + 11 + 111 + ……. to n terms)

= 
3
9

 (9 + 99 + 999 + …. to n terms)

= 
3
9

 {( 10 – 1 ) + ( 102 – 1 ) + ( 103 – 1 ) + … + ( 10n – 1 )}

= 
3
9

 {( 10 + 102 + 103 + …. + 10n ) – n}

= 
3
9

 {10 ( 1 + 10 + 102 + … + 10 n–1 ) – n}

= 
3
9

 [{10 ( 10n – 1 ) / (10 – 1)} – n]

= 
3
81

 (10 n+1 – 10 – 9n)

= 
1

27
 (10 n+1 – 9n – 10)

Example 4: Example 4: Example 4: Example 4: Example 4: Find the sum of n terms of the series 0.7 + 0.77 + 0.777 + …. to n terms
Solution : Solution : Solution : Solution : Solution : Let S denote the required sum.
i.e.  S = 0.7 + 0.77 + 0.777 + ….. to n terms

= 7 (0.1 + 0.11 + 0.111 + …. to n terms)

= 
7
9

 (0.9 + 0.99 + 0.999 + … to n terms )

= 
7
9

 {(1 – 1/10 ) + ( 1 – 1/102 ) + ( 1 – 1/103 ) + … + ( 1 – 1/ 10n )}

= 
7
9

 {n – 
1

10
 ( 1 + 1/10 + 1/102 + …. + 1/10 n–1)}

So S = 
7
9

{n – 
1

10
 ( 1 – 1/10n )/(1 – 1/10 ) }

= 
7
9

{n – ( 1 – 10 –n ) / 9 ) }

= 
7
81

 {9n – 1 + 10 –n }

Example 5: Example 5: Example 5: Example 5: Example 5: Evaluate 0.2175  using the sum of an infinite geometric series.� �
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Solution: Solution: Solution: Solution: Solution: 0.2175  = 0.2175757575 …….

& &0.2175  = 0.21 + 0.0075 + 0.000075 + ….

= 0.21 + 75 ( 1 + 1/102 + 1/104 + …. ) / 104

= 0.21 + 75 {1 / (1– 1/102} / 104

= 0.21 + (75/104) × 102 /99

=21/100 + (¾ ) × (1/99 )

= 21/100 + 1/132

= ( 693 + 25 )/3300 = 718/3300 = 359/1650

Example 6: Example 6: Example 6: Example 6: Example 6: Find three numbers in G. P whose sum is 19 and product is 216.

Solution:Solution:Solution:Solution:Solution: Let the 3 numbers be a/r, a, ar.

According to the question a/r × a × ar = 216

or a3 = 63 => a =6

So the numbers are 6/r, 6, 6r

Again 6/r + 6 + 6r = 19

or 6/r + 6r = 13

or 6 + 6r2 = 13r

or 6r2 – 13r + 6 = 0

or 6r2 – 4r – 9r + 6 = 0

or 2r(3r –2) – 3 (3r – 2) = 2

or (3r – 2) (2r – 3) = 0 or, r = 2/3 , 3/2

So the numbers are

6/(2/3), 6, 6 × (2/3 ) = 9 , 6 , 4

or 6/(3/2), 6 , 6 × (3/2) = 4 , 6 , 9

Exercise 6 (B)Exercise 6 (B)Exercise 6 (B)Exercise 6 (B)Exercise 6 (B)

Choose the most appropriate option (a), (b), (c) or (d)Choose the most appropriate option (a), (b), (c) or (d)Choose the most appropriate option (a), (b), (c) or (d)Choose the most appropriate option (a), (b), (c) or (d)Choose the most appropriate option (a), (b), (c) or (d)

1. The 7th term of the series 6, 12, 24,……is
(a) 384 (b) 834 (c) 438 (d) none of these

2. t8 of the series 6, 12, 24,…is
(a) 786 (b) 768 (c) 867 (c) none of these

3. t12 of the series –128, 64, –32, ….is
(a) – 1/16 (b) 16 (c) 1/16 (d) none of these

4. The 4th term of the series 0.04, 0.2, 1, … is
(a) 0.5 (b) ½ (c) 5 (d) none of these

� �
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5. The last term of the series 1, 2, 4,…. to 10 terms is
(a) 512 (b) 256 (c) 1024 (d) none of these

6. The last term of the series 1, –3, 9, –27 up to 7 terms is

(a) 297 (b) 729 (c) 927 (d) none of these

7. The last term of the series x2, x, 1, …. to 31 terms is

(a) x28 (b) 1/x (c) 1/x28 (d) none of these

8. The sum of the series –2, 6, –18, …. to 7 terms is
(a) –1094 (b) 1094 (c) – 1049 (d) none of these

9. The sum of the series 24, 3, 8, 1, 2, 7,… to 8 terms is

(a) 36 (b)
 
  

13
36

30
(c)

1
36

9
(d) none of these

10. The sum of the series 
1 3

+1+ +
3 3

……to 18 terms is

(a) 9841 
+�� ��

�
(b) 9841 (c)

9841

3
(d) none of these

11. The second term of a G P is 24 and the fifth term is 81. The series is
(a) 16, 36, 24, 54,.. (b) 24, 36, 53,… (c) 16, 24, 36, 54,.. (d) none of these

12. The sum of 3 numbers of a G P is 39 and their product is 729. The numbers are
(a) 3, 27, 9 (b) 9, 3, 27 (c) 3, 9, 27 (d) none of these

13. In a G. P, the product of the first three terms 27/8. The middle term is
(a) 3/2 (b) 2/3 (c) 2/5 (d) none of these

14. If you save 1 paise today, 2 paise the next day 4 paise the succeeding day and so on, then
your total savings in two weeks will be
(a) Rs. 163 (b) Rs. 183 (c) Rs. 163.83 (d) none of these

15. Sum of n terms of the series 4 + 44 + 444 + … is
(a) 4/9 { 10/9 ( 10n –1 ) –n } (b) 10/9 ( 10n –1 ) –n
(c) 4/9 ( 10n –1 ) –n (d) none of these

16. Sum of n terms of the series 0.1 + 0.11 + 0.111 + … is
(a) 1/9 {n – ( 1– ( 0.1 )n )} (b) 1/9 {n – (1–(0.1)n)/9}
(c) n– 1 – (0.1)n/9 (d) none of these

17. The sum of the first 20 terms of a G. P is 244 times the sum of its first 10 terms. The common
ratio is

(a) ± 3 (b) ±3 (c) 3 (d) none of these

18. Sum of the series 1 + 3 + 9 + 27 +….is 364. The number of terms is
(a) 5 (b) 6 (c) 11 (d) none of these
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19. The product of 3 numbers in G P is 729 and the sum of squares is 819. The numbers are
(a) 9, 3, 27 (b) 27, 3, 9 (c) 3, 9, 27 (d) none of these

20. The sum of the series 1 + 2 + 4 + 8 + .. to n term
(a) 2n –1 (b) 2n – 1 (c) 1/2n – 1 (d) none of these

21. The sum of the infinite GP 14, – 2, + 2/7, – 2/49, + … is

(a)
1

4
12

(b)
1

12
4

(c) 12 (d) none of these

22. The sum of the infinite G. P. 1 - 1/3 + 1/9 - 1/27 +... is
(a) 0.33 (b) 0.57 (c) 0.75 (d) none of these

23. The number of terms to be taken so that 1 + 2 + 4 + 8 + will be 8191 is
(a) 10 (b) 13 (c) 12 (d) none of these

24. Four geometric means between 4 and 972 are
(a) 12,30,100,324 (b) 12,24,108,320 (c) 10,36,108,320 (d) none of these

Illustrations :Illustrations :Illustrations :Illustrations :Illustrations :
(I)(I)(I)(I)(I) A person is employed in a company at Rs. 3000 per month and he would get an increase of

Rs. 100 per year. Find the total amount which he receives in 25 years and the monthly salary
in the last year.

Solution:Solution:Solution:Solution:Solution:
He gets in the 1st year at the Rate of 3000 per month;
In the 2nd year he gets at the rate of Rs. 3100 per month;
In the 3rd year at the rate of Rs. 3200 per month so on.
In the last year the monthly salary will be

Rs. {3000 + ( 25 – 1 ) × 100} = Rs. 5400

Total amount = Rs. 12 ( 3000 + 3100 + 3200 +… + 5400) 
 
  n

n
Use S = (a+ )

2
l

= Rs. 12 × 25/2 (3000 + 5400)

= Rs. 150 × 8400

= Rs. 12,60,000

(II)(II)(II)(II)(II) A person borrows Rs. 8,000 at 2.76% Simple Interest per annum. The principal and the interest
are to be paid in the 10 monthly instalments. If each instalment is double the preceding one,
find the value of the first and the last instalment.

Solution:Solution:Solution:Solution:Solution:
Interest to be paid = 2.76 × 10 × 8000 / 100 × 12 = Rs. 184

Total amount to be paid in 10 monthly instalment is Rs. (8000 + 184) = Rs. 8184
The instalments form a G P with common ratio 2 and so Rs. 8184 = a (210 – 1 ) / ( 2 – 1 ),
a = 1st instalment
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Here a = Rs. 8184 / 1023 = Rs. 8

The last instalment = ar 10—1 = 8 × 29 = 8 × 512 = Rs. 4096

Exercise 6 (c)Exercise 6 (c)Exercise 6 (c)Exercise 6 (c)Exercise 6 (c)

Choose the most appropriate option (a), (b), (c) or (d)Choose the most appropriate option (a), (b), (c) or (d)Choose the most appropriate option (a), (b), (c) or (d)Choose the most appropriate option (a), (b), (c) or (d)Choose the most appropriate option (a), (b), (c) or (d)
1. Three numbers are in AP and their sum is 21. If 1, 5, 15 are added to them respectively,

they form a G. P. The numbers are
(a) 5, 7, 9 (b) 9, 5, 7 (c) 7, 5, 9 (d) none of these

2. The sum of 1 + 1/3 + 1/32 + 1/33 + … + 1/3 n –1 is
(a) 2/3 (b) 3/2 (c) 4/5 (d) none of these

3. The sum of the infinite series 1 + 2/3 + 4/9 + .. is
(a) 1/3 (b) 3 (c) 2/3 (d) none of these

4. The sum of the first two terms of a G.P. is 5/3 and the sum to infinity of the series is 3. The
common ratio is
(a) 1/3 (b) 2/3 (c) – 2/3 (d) none of these

5. If p, q and r are in A.P. and x, y, z are in G.P. then xq–r. y r–p. zp–q is equal to
(a) 0 (b) –1 (c) 1 (d) none of these

6. The sum of three numbers in G.P. is 70. If the two extremes by multiplied each by 4 and the
mean by 5, the products are in AP. The numbers are
(a) 12, 18, 40 (b) 10, 20, 40 (c) 40, 20, 10 (d) none of these

7. The sum of 3 numbers in A.P. is 15. If 1, 4 and 19 be added to them respectively, the results
are is G. P. The numbers are
(a) 26, 5, –16 (b) 2, 5, 8 (c) 5, 8, 2 (d) none of these

8. Given x, y, z are in G.P. and xp = yq = zσ, then 1/p , 1/q, 1/σ are in
(a) A.P. (b) G.P. (c) Both A.P. and G.P. (d) none of these

9. If the terms 2x, (x+10) and (3x+2) be in A.P., the value of x is
(a) 7 (b) 10 (c) 6 (d) none of these

10. If A be the A.M. of two positive unequal quantities x and y and G be their G. M, then
(a) A < G (b) A>G (c) A ≥ G (d) A ≤ G

11. The A.M. of two positive numbers is 40 and their G. M. is 24. The numbers are
(a) (72, 8) (b) (70, 10) (c) (60, 20) (d) none of these

12. Three numbers are in A.P. and their sum is 15. If 8, 6, 4 be added to them respectively, the
numbers are in G.P. The numbers are
(a) 2, 6, 7 (b) 4, 6, 5 (c) 3, 5, 7 (d) none of these

13. The sum of four numbers in G. P. is 60 and the A.M. of the 1st and the last is 18. The
numbers are
(a) 4, 8, 16, 32 (b) 4, 16, 8, 32 (c) 16, 8, 4, 20 (d) none of these
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14. A sum of Rs. 6240 is paid off in 30 instalments such that each instalment is Rs. 10 more
than the proceeding installment. The value of the 1st instalment is
(a) Rs. 36 (b) Rs. 30 (c) Rs. 60 (d) none of these

15. The sum of 1.03 + ( 1.03 ) 2 + ( 1.03 ) 3 + …. to n terms is
(a) 103 {(1.03)n – 1} (b) 103/3 {(1.03 )n – 1}   (c)  (1.03)n –1 (d) none of these

16. If x, y, z are in A.P. and x, y, (z + 1) are in G.P. then
(a) (x – z)2 = 4x (b) z2 = (x – y) (c) z = x – y (d) none of these

17. The numbers x, 8, y  are in G.P. and the numbers x, y, –8 are in A.P. The value of x and y
are
(a) (–8, –8) (b) (16, 4) (c) (8, 8) (d) none of these

18. The nth term of the series 16, 8, 4,…. Is 1/217. The value of n is
(a) 20 (b) 21 (c) 22 (d) none of these

19. The sum of n terms of a G.P. whose first terms 1 and the common ratio is 1/2 , is equal to

127
1

128
. The value of n is

(a) 7 (b) 8 (c) 6 (d) none of these

20. t4 of a G.P. in x, t10 = y and t16 = z. Then
(a) x2 = yz (b) z2 = xy (c) y2 = zx (d) none of these

21. If x, y, z are in G.P., then
(a) y2 = xz            (b) y ( z2 + x2 ) = x ( z2 + y2 )         (c) 2y = x+z (d) none of these

22. The sum of all odd numbers between 200 and 300 is
(a) 11600 (b) 12490 (c) 12500 (d) 24750

23. The sum of all natural numbers between 500 and 1000 which are divisible by 13, is
(a) 28405 (b) 24805 (c) 28540 (d) none of these

24. If unity is added to the sum of any number of terms of the A.P. 3, 5, 7, 9,…... the resulting
sum is
(a) ‘a’ perfect cube (b) ‘a’ perfect square (c) ‘a’ number (d) none of these

25. The sum of all natural numbers from 100 to 300 which are exactly divisible by 4 or 5 is
(a) 10200 (b) 15200 (c) 16200 (d) none of these

26. The sum of all natural numbers from 100 to 300 which are exactly divisible by 4 and 5 is
(a) 2200 (b) 2000 (c) 2220 (d) none of these

27. A person pays Rs. 975 by monthly instalment each less then the former by Rs. 5. The first
instalment is Rs. 100. The time by which the entire amount will be paid is
(a) 10 months (b) 15 months (c) 14 months (d) none of these
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28. A person saved Rs. 16,500 in ten years. In each year after the first year he saved Rs. 100
more than he did in the preceding year. The amount of money he saved in the 1st year was
(a) Rs. 1000 (b) Rs. 1500 (c) Rs. 1200 (d) none of these

29. At 10% C.I. p.a., a sum of money accumulate to Rs. 9625 in 5 years. The sum invested
initially is
(a) Rs. 5976.37 (b) Rs. 5970 (c) Rs. 5975 (d) Rs. 5370.96

30. The population of a country was 55 crose in 2005 and is growing at 2% p.a C.I. the
population is the year 2015 is estimated as

(a) 5705 (b) 6005 (c) 6700 (d) none of these
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ANSWERSANSWERSANSWERSANSWERSANSWERS

Exercise 6 (A)Exercise 6 (A)Exercise 6 (A)Exercise 6 (A)Exercise 6 (A)

1. b 2. a 3. a 4. a 5. a 6. b 7. c 8. d

9. a, b 10 c 11. a 12. c 13. b 14. a 15. b 16. c, d

17. a 18. b 19. b 20. c 21. c 22. a 23. b 24. a

25. c

Exercise 6 (B)Exercise 6 (B)Exercise 6 (B)Exercise 6 (B)Exercise 6 (B)

1. a 2. b 3. c 4. c 5. a 6. b 7. c 8. a

9. b 10. a 11. c 12. c 13. a 14. c 15. a 16. b

17. a 18. b 19. c 20. a 21. b 22. c 23. b 24. d

Exercise 6 (C)Exercise 6 (C)Exercise 6 (C)Exercise 6 (C)Exercise 6 (C)

1. a 2. d 3. b 4. b,  c 5. c 6. b, c 7. a,  b 8. a

9. c 10. b 11. a 12. c 13. a 14. d 15. b 16. a

17. b 18. c 19. b 20. c 21. a 22. d 23. a 24. b

25. c 26. a 27. b 28. c 29. d 30. d
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ADDITIONAL QUESTION BANKADDITIONAL QUESTION BANKADDITIONAL QUESTION BANKADDITIONAL QUESTION BANKADDITIONAL QUESTION BANK
1. If a, b, c are in A.P. as well as in G.P. then –

(A) They are also in H.P. (Harmonic Progression) (B) Their reciprocals are in A.P.

(C) Both (A) and (B) are true (D) Both (A) and (B) are false

2. If a, b, c be respectively p th, q th and r th terms of an A.P. the value of

)()()( qpcprbrqa −+−+− is __________.

(A) 0 (B) 1 (C) –1 (D) None

3. If the pth  term of an A.P. is q and the qth term is p the value of the rth term is_________.

(A) p – q – r (B) p + q – r

(C) p + q + r (D) None

4. If the pth  term of an A.P. is q and the qth term is p the value of the (p + q)th term is_______.

(A) 0 (B) 1 (C) –1 (D) None

5. The sum of first n natural number is _______.

(A) (n/2)(n+1) (B) (n/6)(n+1)(2n+1)
(C) [(n/2)(n+1)]² (D) None

6. The sum of square of first n natural number is __________.

(A) (n/2)(n+1) (B) (n/6)(n+1)(2n+1)
(C) [(n/2)(n+1)]² (D) None

7. The sum of cubes of first n natural number is __________.

(A) (n/2)(n+1) (B) (n/6)(n+1)(2n+1)
(C) [(n/2)(n+1)]² (D) None

8. The sum of a series in A.P. is 72 the first term being 17 and the common difference –2. the
number of terms is __________.

(A) 6 (B) 12 (C) 6 or 12 (D) None

9. Find the sum to n terms of ��������	����
����	���������	������

(A) ½(n–1) (B) ½(n+1) (C) (n–1) (D) (n+1)

10. If Sn the sum of first n terms in a series is given by 2n2 + 3n the series is in ______.

(A) A.P. (B) G.P. (C) H.P. (D) None
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11. The sum of all natural numbers between 200 and 400 which are divisible by 7 is ______.

(A) 7730 (B) 8729 (C) 7729 (D) 8730

12. The sum of natural numbers upto 200 excluding those divisible by 5 is ________.

(A) 20100 (B) 4100 (C) 16000 (D) None

13. If a, b, c be the sums of p q r terms respectively of an A.P. the value of

����� �� � ��	
	����� �� � ��	
	����� �� � ��  is ______.

(A) 0 (B) 1 (C) –1 (D) None

14. If  � 
 �� �    be the respectively the sum of terms of � 
 � �� � �  an A.P. the value of

� 
 �� � �    is given by ______.

(A) 1 (B) 2 (C) 3 (D) None

15. The sum of n terms of two A.P.s are in the ratio of ����������	��� . Then the _______ term of
the two series are equal.

(A) 12 (B) 6 (C) 3 (D) None

16. Find three numbers in A.P. whose sum is 6 and the product is –24

(A) –2, 2, 6 (B) –1, 1, 3 (C) 1, 3, 5 (D) 1, 4, 7

17. Find three numbers in A.P. whose sum is 6 and the sum of whose square is 44.

(A) –2, 2, 6 (B) –1, 1, 3 (C) 1, 3, 5 (D) 1, 4, 7

18. Find three numbers in A.P. whose sum is 6 and the sum of their cubes is 232.

(A) –2, 2, 6 (B) –1, 1, 3 (C) 1, 3, 5 (D) 1, 4, 7

19. Divide 12.50 into five parts in A.P. such that the first part and the last part are in the ratio
of 2:3

(A) 2, 2.25, 2.5, 2.75, 3 (B) –2, –2.25, –2.5, –2.75, –3

(C) 4, 4.5, 5, 5.5, 6 (D) –4, –4.5, –5, –5.5, –6

20. If a, b, c are in A.P. then the value of � � � 
 
�� 	��� 	�� ������ �	�� ��  is

(A) 1 (B) 2 (C) 3 (D) None

21. If a, b, c are in A.P. then the value of 
 
�� 	�����	�� ������	����	����  is

(A) 1 (B) 2 (C) 3 (D) None
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22. If a, b, c are in A.P. then  ������ ���	���� ������ ���	���� ������ ���	��� are in ____________.

(A) A.P. (B) G.P. (C) H.P. (D) None

23. If a, b, c are in A.P. then 
 
 
� ���	���� � ���	���� � ���	���  are in ________.

(A) A.P. (B) G.P. (C) H.P. (D) None

24. If  �� �� �����	��� � ���	��� � ���	���  are in A.P. then  
 
 
� � � � �  are in _________.

(A) A.P. (B) G.P. (C) H.P. (D) None

25. If  
 
 
� � � � �  are in A.P. then  ���	���� ���	���� ���	���  are in ________.

(A) A.P. (B) G.P. (C) H.P. (D) None

26. If  
 
 
� � � � �  are in A.P. then  �����	���� �����	���� �����	���  are in ____________.

(A) A.P. (B) G.P. (C) H.P. (D) None

27. If  ���	���������� ���	���������� ���	���������  are in A.P. then �� �� �  are in __________.

(A) A.P. (B) G.P. (C) H.P. (D) None

28. If  
 
 
������� � ������� � �������  are in A.P. then �������� �������� �������  are in _______.

(A) A.P. (B) G.P. (C) H.P. (D) None

29. If a b c are in A.P. then  ���	���� ���	���� ���	���  are in ________.

(A) A.P. (B) G.P. (C) H.P. (D) None

30. Find the  number which should be added to the sum of any number of terms of the A.P.
3, 5, 7, 9, 11 …….resulting in a perfect square.

(A) –1 (B) 0 (C) 1 (D) None

31. The sum of n terms of an A.P. is 

� 	��� . Find the nth term.

(A) 4n + 1 (B) 4n - 1 (C) 2n + 1 (D) 2n - 1

32. The pth  term of an A.P. is  1/q and the qth term is 1/p. The sum of the pqth term is_______.

(A) 
�
���	��



(B) 

�
������



(C) ��	� (D) ����
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33. The sum of p terms of an A.P. is q and the sum of q terms is p. The sum of p + q terms is
________.

(A) – (p + q) (B) p + q (C) (p – q)2 (D) P2 – q2

34. If  S1, S2, S3 be the sums of n terms of three A.P.s the first term of each being unity and the
respective common differences 1, 2, 3 then (S1 + S3) / S2  is ______.

(A) 1 (B) 2 (C) –1 (D) None

35. The sum of all natural numbers between 500 and 1000, which are divisible by 13, is _______.

(A) 28400 (B) 28405 (C) 28410 (D) None

36. The sum of all natural numbers between 100 and 300, which are divisible by 4, is ____.

(A) 10200 (B) 30000 (C) 8200 (D) 2200

37. The sum of all natural numbers from 100 to 300 excluding those, which are divisible by 4, is
_______.

(A) 10200 (B) 30000 (C) 8200 (D) 2200

38. The sum of all natural numbers from 100 to 300, which are divisible by 5, is ______.

(A) 10200 (B) 30000 (C) 8200 (D) 2200

39. The sum of all natural numbers from 100 to 300, which are divisible by 4 and 5, is ______.

(A) 10200 (B) 30000 (C) 8200 (D) 2200

40. The sum of all natural numbers from 100 to 300, which are divisible by 4 or 5, is ______.

(A) 10200 (B) 8200 (C) 2200 (D) 16200

41. If the n terms of two A.P.s are in the ratio (3n+4) : (n+4) the ratio of the fourth term
is ______.

(A) 2 (B) 3 (C) 4 (D) None

42. If a, b, c, d are in A.P. then

(A) 
 
 
 
� ���� 	�� ��� �� (B) 
 
 
 
� 	�� 	�� 	� �� (C) 
 
 
 
� 	��� 	��� ��� �� (D) None

43. If a, b, c, d, e are in A.P. then

(A)  a – b – d + e = 0 (B) a – 2c + e = 0 (C) b – 2c + d = 0 (D) all the above

44. The three numbers in A.P. whose sum is 18 and product is 192 are _______.

(A) 4, 6, 8 (B) –4, –6, –8 (C) 8, 6, 4

(D) both (A) and (C)
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45. The three numbers in A.P., whose sum is 27 and the sum of their squares is 341, are _______.

(A) 2, 9, 16           (B) 16, 9, 2          (C) both (A) and (B) (D) –2, –9, –16

46. The four numbers in A.P., whose sum is 24 and their product is 945, are _______.

(A) 3, 5, 7, 9 (B) 2, 4, 6, 8 (C) 5, 9, 13, 17 (D) None

47. The four numbers in A.P., whose sum is 20 and the sum of their squares is 120, are _______.

(A) 3, 5, 7, 9 (B) 2, 4, 6, 8 (C) 5, 9, 13, 17 (D) None

48. The four numbers in A.P. with the sum of second and third being 22 and the product of
the first and fourth beinf 85 are _______.

(A) 3, 5, 7, 9 (B) 2, 4, 6, 8 (C) 5, 9, 13, 17 (D) None

49. The five numbers in A.P. with their sum 25 and the sum of their squares 135 are _______.

(A) 3, 4, 5, 6, 7 (B) 3, 3.5, 4, 4.5, 5 (C) –3, –4, –5, –6, –7

(D) –3, –3.5, –4, –4.5, –5

50. The five numbers in A.P. with the sum 20 and product of the first and last 15 are _______.

(A) 3, 4, 5, 6,  7 (B) 3, 3.5, 4, 4.5, 5 (C) –3, –4, –5, –6, –7

(D) –3, –3.5, –4, –4.5, –5

51. The  sum of n terms of 2, 4, 6, 8….. is

(A) n(n+1) (B) (n/2)(n+1) (C) n(n–1) (D) (n/2)(n-1)

52. The sum of n terms of a+b, 2a, 3a–b,  ….. is

(A) n(a–b)+2b (B) n(a+b) (C) both the above (D) None

53. The sum of n terms of (x + y)², (x² + y²), (x – y)²,...... is
(A) (x + y)² –2(n – 1)xy (B) n(x + y)² – n(n – 1)xy(C) both the above (D) None

54. The sum of n terms of (1/n)(n–1), (1/n) (n–2), (1/n) (n–3)....... is
(A) 0 (B) (1/2)(n–1) (C) (1/2)(n+1) (D) None

55. The sum of n terms of 1.4, 3.7, 5.10 ……. Is
(A) (n/2)(4n²+5n–1) (B) n(4n²+5n–1) (C) (n/2)(4n²–5n–1) (D) None
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56. The sum of n terms of  1², 3², 5², 7²,.......is

(A) (n/3)(4n² –1) (B) (n/2)(4n² –1) (C) (n/3)(4n² +1) (D) None

57. The sum of n terms of 1, (1 + 2), (1 + 2 + 3) …….. is

(A) (n/3)(n+1)(n–2) (B) (n/3)(n+1)(n+2) (C) n(n+1)(n+2) (D) None

58. The sum of n terms of the series  1²/1+(1²+2²)/2+(1²+2²+3²)/3+.......is

(A) (n/36)(4n² +15n+17) (B) (n/12)(4n²+15n+17)

(C) (n/12)(4n² +15n+17) (D) None

59. The sum of n terms of the series 2.4.6 + 4.6.8 + 6.8.10 + ………. is

(A) 2n(n³+6n²+11n+6) (B) 2n(n³–6n²+11n–6)

(C) n(n³+6n²+11n+6) (D) n(n³+6n²+11n– 6)

60. The sum of n terms of the series   
 
 
 
��� 	��� 	��� 	���� 	�������� is

(A) (n/12)(n+1)(9n²+49n+44)–8n (B) (n/12)(n+1)(9n²+49n+44)+8n

(C) (n/6)(2n+1)(9n²+49n+44)–8n (D) None

61. The sum of n terms of the series 4 + 6 + 9 + 13 …….. is

(A) (n/6)(n²+3n+20) (B) (n/6)(n+1)(n+2) (C) (n/3)(n+1)(n+2) (D) None

62. The sum to n terms of the series 11, 23, 59, 167 ………is

(A) 3n+1+5n–3 (B) 3n+1+5n+3 (C) 3n+5n–3 (D) None

63. The sum of n terms of the series �������	��������	���������	������
��	�������� is

(A) (n/4)(5n+4)–1 (B) (n/4)(5n+4) (C) (n/4)(5n–4)–1 (D) None

64. The sum of n terms of the series 1 + 3 + 5 + ………. Is

(A) 
� (B) 

� (C) 
�
� (D) None

65. The sum of n terms of the series 2 + 6 + 10 + ……. is

(A) 

� (B) 
� (C) 
�
� (D) 
��

66. The sum of n terms of the series 1.2 + 2.3 + 3.4 + ……. Is

(A) (n/3)(n+1)(n+2) (B) (n/2)(n+1)(n+2) (C) (n/3)(n+1)(n– 2)(D) None
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67. The sum of n terms of the series 1.2.3 + 2.3.4 + 3.4.5 + …….is

(A) (n/4)(n+1)(n+2)(n+3) (B) (n/3)(n+1)(n+2)(n+3)

(C) (n/2)(n+1)(n+2)(n+3) (D) None

68. The sum of n terms of the series 1.2+3.2²+5.2³+7.24+....... is

(A) (n–1)2n+2–2n+1 +6 (B) (n+1)2n+2–2n+1 +6 (C) (n–1)2n+2–2n+1 –6 (D) None

69. The sum of n terms of the series  1/(3.8)+1/(8.13)+1/(13.18)+...... is

(A) (n/3)(5n+3)–1 (B) (n/2)(5n+3)–1 (C) (n/2)(5n–3)–1 (D) None

70. The sum of n terms of the series  1/1+1/(1+2)+1/(1+2+3)+..... is

(A) 2n( n+1)–1 (B) n(n+1) (C) 2n(n–1)–1 (D) None

71. The sum of n terms of the series  22+52+82+........ is

(A) (n/2)(6n2+3n–1) (B) (n/2)(6n2–3n–1)

(C) (n/2)(6n2+3n+1) (D) None

72. The sum of n terms of the series  12+32+52+........ is

(A) 

��� ����

�
� � (B) n2(2n2+1) (C) n(2n–1) (D) n(2n+1)

73. The sum of n terms of the series 1.4 + 3.7 + 5.10 + …… is
(A) (n/2)(4n2+5 1) (B) (n/2)(5n2+4n–1)

(C) (n/2)(4n2+5n+1) (D) None

74. The sum of n terms of the series  
 
 

�� 	��� 	��� 	 ��������  is

(A) � 
� ��
��� 	�
 	�
� 	

�� � � � (B) � 
� ��
��� ��
 	�
� �

�� � � �

(C)  � 
� ����� 	�
 	�
� 	

�� � � � (D) None

75. The sum of n terms of the series 1 + (1 + 3) + (1 + 3 + 5) + ……. is

(A) � ���� 	���
 	��� � � (B) � ���� 	��� 	
�� � � (C) � ���� 	���
 	��� � � (D) None

76. The sum of n terms of the series 
 
 
 
 
 
� 	�� 	
 �	�� 	
 	� �	��������  is

(A) 
� ��
�� 	�� � 	
�� � � (B) 
� ��
�� ��� � 	
�� � � (C) 
� ��
�� ���� 	
�� � � (D) None
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77. The sum of n terms of the series  
�	��	����	��	���	��� �	�������� is

(A) �����
����� � (B) �����
�� ����
����� ���              (C) Both (D) None

78. The sum of n terms of the series  ��	� ����
	� �
���	 ��������� � � is

(A) � ���� 	��� 	
�� � � (B) � ���� 	��� 	
�� � � (C) � �
�� 	��� 	
�� � � (D) None

79. The sum of n terms of the series 1 + 5 + 12 + 22 + ….. is

(A) 
� �
�� 	��� � (B) 
 � 	��� � (C) 
� �
� � ���� � (D) None

80. The sum of n terms of the series 4 + 14 + 30 + 52 + 80 + …… is

(A) 
� 	��� � (B) 
� ���� � (C) 
� ���� � (D) None

81. The sum of n terms of the series 3 + 6 + 11 + 20 + 37 + …….. is

(A) 	�
 	� �
�� 	���
� � � (B) 	�
 	� �
�� 	����� � � (C) 	�
 	� �
�� ����
� � � (D) None

82. The nth terms of the series is 1/(4.7) + 1/(7.10) + 1/(10.13) + ……. is

(A) �� ���������� 	�� ��� 	�� �� � (B) �� ���������� ��� ��� 	�� �� �

(C)  �� ���������� 	�� ��� ��� �� � (D) None

83. In question No.(82) the sum of the series upto µ is

(A) ��� ����� 	��� � (B) ��� ����� ���� � (C) ��� �
��� 	��� � (D) None

84. The sum of n terms of the series  
 
 
 
 
 
� ��	�� 	
 ����	
�	�� 	
 	� ����	
	��	 ���� is

(A) � ���� 	
�� � (B) � ���� 	��� � (C) � ���� 	��� � (D) None

85. The sum of n terms of the series � � � � � �� ��	�� 	
 ��
	�� 	
 	� ���	 ����   is

(A) � ����� 	��� 	
��� 	��� � � � (B) � �
��� 	��� 	
��� 	��� � � �

(C) ��������	����	
����	�� (D) None

86. The value of 
� 	�	
���	
	�	 �����	������  is

(A) n3 (B) n2 (C) n (D) None

87. ��
 ��  is divisible by

(A) 15 (B) 4 (C) 6 (D) 64
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88. �� �
 ���  is divisible by

(A) 15 (B) 4 (C) 6 (D) 64

89. � ����
 ���� � � is divisible by

(A) 15 (B) 4 (C) 6 (D) 64

90. 
�� 	�� ���  is divisible by

(A) 15 (B) 4 (C) 6 (D) 64

91. The sum of n terms of the series whose nth term 
�� 	
� is  is given by

(A) � �
�� 	���
 	��� � � (B) � �
�� 	���� 	
�� � �

(C) � �
�� 	���� �
�� � � (D) ���
���	���
����

92. The sum of n terms of the series whose nth term ���
 is  is given by

(A) �	������
 	
 (B) �	���	��
 	
 (C) ������
 	
 (D) None

93. The sum of n terms of the series whose nth term �	���� 	
�  is  is given by

(A) �	
���
��� ���	���	�� (B) �	
�
����� ���	���	��

(C) �	
���
��� 	��	���	�� (D) None

94. If the third term of a G.P. is the square of the first and the fifth term is 64 the series would
be ________.

(A) 4 + 8 + 16 + 32 + …. (B) 4 – 8 + 16 – 32 + ……..

(C) both (D) None

95. Three numbers whose sum is 15 are in A.P. but if they are added by 1, 4, 19 respectively
they are in G.P. The numbers are _______.

(A) 2, 5, 8 (B) 26, 5, –16 (C) Both (D) None

96. If a, b, c are the pth, qth and rth terms of a G.P. respectively the value of ��� ��� ���� �� ��
is ________
(A) 0 (B) 1 (C) –1 (D) None

97. If a, b, c are in A.P. and x, y, z in G.P. then the value of  ��� ��� ��� �! �" is ________

(A) 0 (B) 1 (C) –1 (D) None
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98. If a, b, c are in A.P. and x, y, z in G.P. then the value of � � � � � �� �! �" �� �! �" �  is ____

(A) 0 (B) 1 (C) –1 (D) None

99. The sum of n terms of the series 7 + 77 + 777 + …… is

(A) �	��������������� ������� (B) �	���������������� �������

(C)  �	���������������� ������� (D) None

100. The least value of n for which the sum of n terms of the series 1 + 3 + 32+ …… is greater
than 7000 is ______.

(A) 9 (B) 10 (C) 8 (D) 7

101. If ‘S’ be the sum, ‘P’ the product and ‘R’ the sum of the reciprocals of n terms in a G.P.
then ‘P’ is the _______ of Sn and R-n.

(A) Arithmetic Mean (B) Geometric Mean (C) Harmonic Mean (D) None

102. Sum upto  of the series �	� 
	�	�����  is

(A) ��
	 
� (B) ��
� 
� (C) ��
	 
� (D) ��
� 
�

103. Sum upto  of the series 
 � � � ���
	��� 	��
 	��� 	��
 	��� 	 �����  is

(A) 19/24 (B) 24/19 (C) 5/24 (D) None

104. If  a
�	�	� 	 ������� �  �  and a
�	�	� 	 ������� � !  then  a
 
�	��	� � 	 ������ is given by

__________.

(A) � !��� 	!��� (B) � !��� �!��� (C) � !��� 	!	�� (D) None

105. If the sum of three numbers in G.P. is 35 and their product is 1000 the numbers are ____.

(A) 20, 10, 5 (B) 5, 10, 20 (C) both (D) None

106. If the sum of three numbers in G.P. is 21 and the sum of their squares is 189 the numbers
are ____.

(A) 3, 6, 12 (B) 12, 6, 3 (C) both (D) None

107. If a, b, c are in G.P. then the value of 
 
 
 
��� 	� ����� 	� �  is ____

(A) 0 (B) 1 (C) –1 (D) None

108. If a, b, c, d are in G.P. then the value of  
 
�����������	���� �� �  is ____

(A) 0 (B) 1 (C) –1 (D) None
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109. If a, b, c, d are in G.P. then the value of  
 
 
 
 
 
 
���	��	��� ��� 	� 	� ��� 	� 	� � is _________.

(A) 0 (B) 1 (C) –1 (D) None

110. If a, b, c, d are in G.P. then �	�� �	�� �	�  are in

(A) A.P. (B) G.P. (C) H.P. (D) None

111. If a, b, c are in G.P. then 
 
 
 
� 	� � ��	��� � 	�  are in

(A) A.P. (B) G.P. (C) H.P. (D) None

112. If a, b, x, y, z are positive numbers such that a, x, b are in A.P. and a, y, b are in G.P. and

"��
������	��  then

(A) x y z are in G.P. (B)  ! "≥ ≥ (C) both (D) None

113. If a, b, c are in G.P. then the value of  
 
 
 
����	����	�	�� ���	�	���� 	� 	� �  is given by

(A) 0 (B) 1 (C) –1 (D) None

114. If a, b, c are in G.P. then the value of 
 
 
 
� �� 	� ����� 	� �  is given by

(A) 0 (B) 1 (C) –1 (D) None

115. If a, b, c are in G.P. then the value of  
 
 
 �� �� �� � � �� � � �� 	� 	� ���� 	� 	� � is given by

(A) 0 (B) 1 (C) –1 (D) None

116. If a, b, c, d are in G.P. then  
 
 
����� � ����� � �����  are in

(A) A.P. (B) G.P. (C) H.P. (D) None

117. If a b c d are in G.P. then the value of 
 
 
 
����� 	 ����� 	 ����� ������  is given by

(A) 0 (B) 1 (C) –1 (D) None

118. If ������ ������ �����  are in G.P. then the value of 
��	�	�� �����	��	���  is given by

(A) 0 (B) 1 (C) –1 (D) None

119. If ��!�� ��"� �� ��  and a, b, c are in G.P. then x, y, z are in

(A) A.P. (B) G.P. (C) H.P. (D) None

120. If x = a + a/r + a/r2 + ..... α,  y = b – b/r + b/r2 – ..... α, and  z  = c + c/r2 + c/r4 + .....

α, then the value of  
�

��
�

�

��
−  is

(A) 0 (B) 1 (C) –1 (D) None
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121. If a, b, c are in A.P. a, x, b are in G.P. and  b, y, c are in G.P then  
 
 
 � � � !  are in

(A) A.P. (B) G.P. (C) H.P. (D) None

122. If �� ���� ���  are in G.P. and  ���������  then a, b, c are in

(A) A.P. (B) G.P. (C) H.P. (D) None

123. If  �� �� ��	��  are in G.P. and a = (b–c) 2 then a, b, c are in

(A) A.P. (B) G.P. (C) H.P. (D) None

124. If � 
 � �# � # � # � ��������#  are the sums of infinite G.P.s whose first terms are 1, 2, 3 …..n and

whose common ratios are 1/2, 1/3, ……1/(n+1) then the value of  � 
 � �# 	# 	# 	 ��������#  is

(A) ���
� ��	�� (B) ���
� ��	
� (C) ���
� ��	�� (D) 
� �


125. The G.P. whose 3rd and 6th terms are 1, –1/8 respectively is
(A) 4, –2, 1 ….. (B) 4, 2, 1 ……. (C) 4, –1, 1/4 …….. (D) None

126. In a G.P. if the (p+ q)th  term is m and the (p – q)th term is n then the pth term is_________.

(A) ��
�$�� (B) $� (C) �$	�� (D) �$���

127. The sum of n terms of the series  is �� �	�	�� �	����

(A) ��
����� ��	 �� �� ���� (B) ��
����� � �	�� �� ����

(C) ��
����� ��	 �� �� 	��� (D) None

128. The sum of n terms of the series 5/2 – 1 + 2/5 – …… is

(A) � � ��
������ �� 	
 ��� (B) � � ��
������ �� �
 ��� (C) both (D) None

129. The sum of n terms of the series 0.3 + 0.03 + 0.003 + …….. is

(A) ������������� � (B) ��������	���� � (C) both (D) None

130. The sum of first eight terms of G.P. is five times the sum of the first four terms. The common
ratio is _______.

(A) 
 (B) � 
 (C) both (D) None

131. If the sum of n terms of a G.P. with first term 1 and common ratio 1/2 is 1+127/128, the
value of n is _______.

(A) 8 (B) 5 (C) 3 (D) None
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132. If the sum of n terms of a G.P. with last term 128 and common ratio 2 is 255, the value of
n is _________.

(A) 8 (B) 5 (C) 3 (D) None

133. How many terms of the G.P. 1, 4, 16 …. are to be taken to have their sum 341?

(A) 8 (B) 5 (C) 3 (D) None

134. The sum of n terms of the series 5 + 55 + 555 + …….. is

(A) �������� ��� ���������� (B) �������� ��� 	���������

(C) �������� ��� 	��	������ (D) None

135. The sum of n terms of the series 0.5 + 0.55 + 0.555 + ………. is

(A) �������������������� � (B) ��������	����������� �

(C)  ��������	��������	�� � (D) None

136. The sum of n terms of the series  
 �����	���� 	���� 	 ������  is

(A) ������������� ��� (B) ���� � ������� ��� + (C) �	������������� ��� (D) None

137. The sum upto infinity of the series 1/2 + 1/6 + 1/18 + …… is

(A) 3/4 (B) 1/4 (C) 1/2 (D) None

138. The sum upto infinity of the series 4 + 0.8 + 0.16 + …… is

(A) 5 (B) 10 (C) 8 (D) None

139. The sum upto infinity of the series  
	�� 
	���
 
�	�������  is

(A) 
 
 (B) 2 (C) 4 (D) None

140. The sum upto infinity of the series 2/3 + 5/9 + 2/27 + 5/81 + ……. is

(A) 11/8 (B) 8/11 (C) 3/11 (D) None

141. The sum upto infinity of the series � 
	��	�	� 
���	 ������  is

(A) ���
���	� 
� (B) ���
����� 
� (C) �	� 
 (D) None

142. The sum upto infinity of the series �
 �� �� �
 ����	
 �	�
 	
 �	�
 	
 �	 �������   is

(A) 7/3 (B) 3/7 (C) 4/7 (D) None
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143. The sum upto infinity of the series 
 � �������� 	��� ���� 	 �������  is

(A) 23/48 (B) 25/48 (C) 1/2 (D) None

144. If the sum of infinite terms in a G.P. is 2 and the sum of their squares is 4/3 the series is

(A) 1, 1/2, 1/4 …… (B) 1, –1/2, 1/4 ……. (C) –1, –1/2, –1/4 …. (D) None

145. The infinite G.P. series with first term 1/4 and sum 1/3 is

(A) 1/4, 1/16, 1/64 … (B) 1/4, –1/16, 1/64 …(C) 1/4, 1/8, 1/16 …. (D) None

146. If the first term of a G.P. exceeds the second term by 2 and the sum to infinity is 50 the
series is __________.

(A) 10, 8, 32/5 … (B) 10, 8, 5/2 … (C) 10, 10/3, 10/9 …. (D) None

147. Three numbers in G.P. with their sum 130 and their product 27000 are _________.

(A) 10, 30, 90 … (B) 90, 30, 10 … (C) both (D) None

148. Three numbers in G.P. with their sum 13/3 and sum of their squares 91/9 are ____.

(A) 1/3, 1, 3 (B) 3, 1, 1/3 (C) both (D) None

149. Find five numbers in G.P. such that their product is 32 and the product of the last two is
108.

(A) 2/9, 2/3, 2, 6, 18 (B) 18, 6, 2, 2/3, 2/9 (C) both (D) None

150. If the continued product of three numbers in G.P. is 27 and the sum of their products in
pairs is 39 the numbers are _________.

(A) 1, 3, 9 (B) 9, 3, 1 (C) both (D) None

151. The numbers x, 8, y are in G.P. and the numbers x, y, –8 are in A.P. The values of x, y are
___________.

(A) 16, 4 (B) 4, 16 (C) both (D) None
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ANSWERSANSWERSANSWERSANSWERSANSWERS

1) C 31) A 61) A 91) A 121) A
2) A 32) A 62) A 92) A 122) A
3) B 33) A 63) A 93) A 123) A
4) A 34) B 64) A 94) C 124) A
5) A 35) B 65) A 95) C 125) A
6) B 36) A 66) A 96) B 126) A
7) C 37) B 67) A 97) B 127) A
8) C 38) C 68) A 98) B 128) C
9) A 39) D 69) A 99) A 129) A
10) A 40) D 70) A 100) C 130) C
11) B 41) A 71) A 101) B 131) A
12) B 42) A 72) A 102) A 132) A
13) A 43) D 73) A 103) A 133) B
14) C 44) D 74) A 104) A 134) A
15) B 45) C 75) A 105) C 135) A
16) A 46) A 76) A 106) C 136) A
17) A 47) B 77) B 107) A 137) A
18) A 48) C 78) A 108) A 138) A
19) A 49) A 79) A 109) A 139) A
20) C 50) B 80) A 110) B 140) A
21) B 51) A 81) A 111) B 141) A
22) A 52) D 82) A 112) C 142) A
23) A 53) B 83) A 113) A 143) A
24) A 54) B 84) A 114) A 144) A
25) C 55) A 85) A 115) A 145) A
26) A 56) A 86) A 116) B 146) A
27) C 57) D 87) A 117) A 147) C
28) C 58) A 88) B 118) A 148) C
29) A 59)  A 89) C 119) A 149) A
30) C 60) A 90) D 120) A 150) C
151) A
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