

CHAPTER - 6

SEQUENCE **AND SERIES-**ARTHMETIC AND GEOMETRIC PROGRESSIONS

LEARNING OBJECTIVES

Often students will come across a sequence of numbers which are having a common difference, i.e., difference between the two consecutive pairs are the same. Also another very common sequence of numbers which are having common ratio, i.e., ratio of two consecutive pairs are the same. Could you guess what these special type of sequences are termed in mathematics?

Read this chapter to understand that these two special type of sequences are called Arithmetic Progression and Geometric Progression respectively. Further learn how to find out an element of these special sequences and how to find sum of these sequences.

These sequences will be useful for understanding various formulae of accounting and finance.

The topics of sequence, series, A.P., G.P. find useful applications in commercial problems among others; viz., to find interest earned on compound interest, depreciations after certain amount of time and total sum on recurring deposits, etc.

6.1 SEQUENCE

Let us consider the following collection of numbers-

- (1) 28, 2, 25, 27, —
- (2) 2, 7, 11, 19, 31, 51, —
- (3) 1, 2, 3, 4, 5, 6, _____
- (4) 20, 18, 16, 14, 12, 10, _____

In (1) the nos. are not arranged in a particular order. In (2) the nos. are in ascending order but they do not obey any rule or law. It is, therefore, not possible to indicate the number next to 51.

In (3) we find that by adding 1 to any number, we get the next one. Here the no. next to 6 is (6 + 1 =)7.

In (4) if we subtract 2 from any no. we get the nos. that follows. Here the no. next to 10 is (10-2 =) 8.

Under these circumstances, we say, the nos. in the collections (1) and (2) do not form sequences whereas the nos. in the collections (3) & (4) form sequences.

Thus a sequence may be defined as follows:-

An ordered collection of numbers a_1, a_2, a_3, a_4 ,, a_n ,, a_n , is a sequence if according to some definite rule or law, there is a definite value of a_n called the term or element of the sequence, corresponding to any value of the natural no. n.

Clearly, a_1 is the 1st term of the sequence , a_2 is the 2nd term,, a_n is the nth term.

In the nth term a_n , by putting n = 1, 2, 3,..... successively, we get a_1, a_2, a_3, a_4 ,....

Thus it is clear that the nth term of a sequence is a function of the positive integer n. The nth term is also called the general term of the sequence. To specify a sequence, nth term must be known, otherwise it may lead to confusion. A sequence may be finite or infinite.

If the number of elements in a sequence is finite, the sequence is called *finite sequence*; while if the number of elements is unending, the sequence is *infinite*.

6.2

A finite sequence $a_1, a_2, a_3, a_4, \dots, a_n$ is denoted by $\{a_i\}_{i=1}^n$ and an infinite sequence $a_1, a_2, a_3, a_4, \dots, a_n$

 $a_{3'}, a_{4'}, \dots, a_{n}$ is denoted by $\{a_n\}_{n=1}^{\infty}$ or simply by $\{a_n\}$ where a_n is the nth element of the sequence.

Example :

- 1) The sequence $\{1/n\}$ is $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots$
- 2) The sequence { $(-1)^n n$ } is $-1, 2, -3, 4, -5, \dots$
- 3) The sequence { n } is 1, 2, 3,...
- 4) The sequence { n / (n + 1) } is $\frac{1}{2'}\frac{2}{3'}\frac{3}{4}, \frac{4}{5'}$
- 5) A sequence of even positive integers is 2, 4, 6,
- 6) A sequence of odd positive integers is 1, 3, 5, 7,

All the above are infinite sequences.

Example:

- 1) A sequence of even positive integers within 12 i.e., is 2, 4, 6, 10.
- 2) A sequence of odd positive integers within 11 i.e., is 1, 3, 5, 7, 9. etc.

All the above are finite sequences.

6.2 SERIES

An expression of the form $a_1 + a_2 + a_3 + \ldots + a_n + \ldots$ which is the sum of the elements of the sequence { a_n } is called a *series*. If the series contains a finite number of elements, it is called a *finite series*, otherwise called *an infinite series*.

If $S_n = u_1 + u_2 + u_3 + u_4 + \dots + u_n$, then S_n is called the sum to n terms (or the sum of the first n terms) of the series and is denoted by the Greek letter sigma Σ .

Thus,
$$S_n = \sum_{r=1}^n u_r$$
 or simply by Σu_n .

Illustrations :

- (i) $1 + 3 + 5 + 7 + \dots$ is a series in which 1st term = 1, 2nd term = 3, and so on.
- (ii) $2-4+8-16+\ldots$ is also a series in which 1st term = 2, 2nd term = -4, and so on.

6.3 ARITHMETIC PROGRESSION (A.P.)

A sequence $a_1, a_2, a_3, \dots, a_n$ is called an Arithmetic Progression (A.P.) when $a_2 - a_1 = a_3 - a_2 = \dots$ = $a_n - a_{n-1}$. That means A. P. is a sequence in which each term is obtained by adding a constant d to the preceding term. This constant 'd' is called the *common difference* of the A.P. If 3 numbers a, b, c are in A.P., we say

b - a = c - b or a + c = 2b; b is called the arithmetic mean between a and c.

Example: 1) $2,5,8,11,14,17,\ldots$ is an A.P. in which d = 3 is the common difference.

MATHS

2) 15,13,11,9,7,5,3,1,–1, is an A.P. in which –2 is the common difference.

Solution: In (1) 2nd term = 5 , 1st term = 2, 3rd term = 8,

so 2nd term – 1st term = 5 - 2 = 3, 3rd term – 2nd term = 8 - 5 = 3

Here the difference between a term and the preceding term is same that is always constant. This constant is called common difference.

Now in generel an A.P. series can be written as

a, a + d, a + 2d, a + 3d, a + 4d,

where 'a' is the 1^{st} term and 'd' is the common difference.

Thus 1^{st} term $(t_1) = a = a + (1 - 1) d$

 $2^{nd} term(t_2) = a + d = a + (2 - 1) d$ $3^{rd} term(t_3) = a + 2d = a + (3 - 1) d$ $4^{th} term(t_3) = a + 3d = a + (4 - 1) d$

.....

 $t = term(t_4) - a + 5u - a + (4 - 1)u$

 n^{th} term $(t_n) = a + (n - 1) d$, where n is the position no. of the term .

Using this formula we can get

50th term (= t_{50}) = a + (50 - 1) d = a + 49d **Example 1:** Find the 7th term of the A.P. 8, 5, 2, -1, -4,.... **Solution :** Here a = 8, d = 5 - 8 = -3 Now $t_7 = 8 + (7 - 1) d$ = 8 + (7 - 1) (-3) = 8 + 6 (-3) = 8 - 18 = -10

Example 2 : Which term of the AP $\frac{3}{\sqrt{7}}$, $\frac{4}{\sqrt{7}}$, $\frac{5}{\sqrt{7}}$is $\frac{17}{\sqrt{7}}$?

Solution :
$$a = \frac{3}{\sqrt{7}}, d = \frac{4}{\sqrt{7}} - \frac{3}{\sqrt{7}} = \frac{1}{\sqrt{7}}, t_n = \frac{17}{\sqrt{7}}$$

We may write

$$\frac{17}{\sqrt{7}} = \frac{3}{\sqrt{7}} + (n-1) \quad (\frac{1}{\sqrt{7}})$$

or, 17 = 3 + (n - 1)

or, n = 17 - 2 = 15

Hence, 15th term of the A.P. is $\frac{17}{\sqrt{7}}$.

Example 3: If 5th and 12th terms of an A.P. are 14 and 35 respectively, find the A.P.

Solution: Let a be the 1st term & d be the common difference of A.P.

 $t_5 = a + 4d = 14$ $t_{12} = a + 11d = 35$

On solving the above two equations:

7d = 21 = i.e., d = 3

and $a = 14 - (4 \times 3) = 14 - 12 = 2$

Hence, the required A.P. is 2, 5, 8, 11, 14,....

Example 4: Divide 69 into three parts which are in A.P. and are such that the product of the 1st two parts is 483.

Solution: Given that the three parts are in A.P., let the three parts which are in A.P. be a - d, a, a + d......

Thus a - d + a + a + d = 69

or 3a = 69

or a = 23

So the three parts are 23 - d, 23, 23 + d

Since the product of first two parts is 483, therefore, we have

23(23 - d) = 483

or 23 - d = 483 / 23 = 21

or
$$d = 23 - 21 = 2$$

Hence, the three parts which are in A.P. are

23 - 2 = 21, 23, 23 + 2 = 25

Finally the parts are 21, 23, 25.

Example 5: Find the arithmetic mean between 4 and 10.

Solution: We know that the A.M. of a & b is = (a + b)/2

Hence, The A. M between 4 & 10 = (4 + 10) / 2 = 7

MATHS

Example 6: Insert 4 arithmetic means between 4 and 324.

4, -, -, -, 324

Solution: Here a = 4, d = ? n = 2 + 4 = 6, $t_n = 324$ Now $t_n = a + (n - 1) d$ 324 = 4 + (6 - 1) dor 320= 5d i.e., = i.e., d = 320 / 5 = 64 or $1^{st} AM = 4 + 64 = 68$ So the $2^{nd} AM = 68 + 64 = 132$ 3^{rd} AM = 132 + 64 = 196 $4^{\text{th}} \text{AM} = 196 + 64 = 260$

Sum of the first n terms

Let S be the Sum, a be the 1st term and ℓ the last term of an A.P. If the number of term are n, then $t_n = \ell$. Let d be the common difference of the A.P.

Now
$$S = a + (a + d) + (a + 2d) + ... + (\ell - 2d) + (\ell - d) + \ell$$

Again $S = \ell + (\ell - d) + (\ell - 2d) + ... + (a + 2d) + (a + d) + a$
On adding the above, we have
 $2S = (a + \ell) + (a + \ell) + (a + \ell) + + (a + \ell)$
 $= n(a + \ell)$
or $S = n(a + \ell) / 2$

Note: The above formula may be used to determine the sum of n terms of an A.P. when the first term a and the last term is given.

Now
$$l = t_n = a + (n-1) d$$

$$\therefore S = \frac{n\{a+a+(n-1)d\}}{2}$$

$$S = \frac{n}{2}\{2a+(n-1)d\}$$

or

Note: The above formula may be used when the first term a, common difference d and the number of terms of an A.P. are given.

Sum of 1st n natural or counting numbers

Again

6.6

 $+3+\ldots+(n-1)+n$ S = 1 +2 $S = n + (n - 1) + (n - 2) + \dots + 3$ +2 +1 On adding the above, we get $2S = (n + 1) + (n + 1) + \dots$ to n terms 2S = n(n+1)or S = n(n + 1)/2

Then Sum of 1^{st} , n natural number is n(n + 1) / 2

i.e.
$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

Sum of 1st n odd number

 $S = 1 + 3 + 5 + \dots + (2n - 1)$

Sum of 1st n odd number

 $S = 1 + 3 + 5 + \dots + (2n - 1)$ Since $S = n\{2a + (n - 1)d\} / 2$, we find

S =
$$\frac{n}{2}$$
 { 2.1 + (n - 1) 2 } = $\frac{n}{2}$ (2n) n^2

or $S = n^2$

Then sum of 1^{st} , n odd numbers is n^2 , i.e. $1 + 3 + 5 + \dots + (2n - 1) = n^2$

Adding both sides term by term,

 $n^{3} = 3S - 3 n (n + 1) / 2 + n$ or $2n^{3} = 6S - 3n^{2} - 3n + 2n$ or $6S = 2n^{3} + 3n^{2} + n$ or $6S = n (2n^{2} + 3n + 1)$ or 6S = n (n + 1) (2n + 1)S = n(n + 1) (2n + 1) / 6

Thus sum of the squares of the 1st, n natural numbers is $\frac{n(n+1)(2n+1)}{6}$

i.e. $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$.

Similarly, sum of the cubes of 1st n natural number can be found out as $\left\{\frac{n(n+1)}{2}\right\}^2$ by taking the identity

MATHS

 m^4 – (m – 1) 4 = $4m^3$ – $6m^2$ + 4m – 1 and putting m = 1, 2, 3,..., n. Thus

$$1^3 + 2^3 + 3^3 + \dots + n^3 = \left\{\frac{n(n+1)}{2}\right\}^2$$

Exercise 6 (A)

Choose the most appropriate option (a), (b) , (c) or (d)

_						
1.	The nth element of the (a) n	e sequence 1, 3, 5, 7, (b) 2n – 1	Is (c) 2n +1	(d) none of these		
2.	The nth element of the	sequence -1, 2, -4, 8	is			
	(a) $(-1)^{n}2^{n-1}$	(b) 2^{n-1}	(c) 2 ⁿ	(d) none of these		
	· _					
3.	$\sum_{i=4}^{7} \sqrt{2i-1}$ can be writte	en as				
	(a) $\sqrt{7} + \sqrt{9} + \sqrt{11} + \sqrt{11}$		(b) $2\sqrt{7} + 2\sqrt{9} + 2\sqrt{11}$	+2√13		
	(c) $2\sqrt{7} + 2\sqrt{9} + 2\sqrt{11} + 2\sqrt{11}$		(d) none of these.			
4.	-5, 25, -125 , 625, ca	an be written as				
	(a) $\sum_{k=1}^{\infty} (-5)^k$	(b) $\sum_{k=1}^{\infty} 5^k$	(c) $\sum_{k=1}^{\infty} -5^{k}$	(d) none of these		
5.	The first three terms of	sequence when nth terr	m t is $n^2 - 2n$ are			
	(a) −1, 0, 3	(b) 1, 0, 2		(d) none of these		
6.	Which term of the pros	gression –1, –3, –5, Is				
01	(a) 21 st	(b) 20 th	(c) 19 th	(d) none of these		
7.	The value of x such tha	t 8x + 4, 6x - 2, 2x + 7 w	vill form an AP is			
7.	(a) 15	(b) 2	(c) $15/2$ (d)	none of the these		
8.		P. is n and nth term is n				
0.	(a) $m + n + r$	(b) $n + m - 2r$	(c) $m + n + r/2$	(d) $m + n - r$		
			(c) III + II + I/2	(a) III / II I		
0	TTI 1 (.1.	ns of the series $10 + 9\frac{2}{3}$	1			
9.	The number of the tern	ns of the series $10 + 9^{-3}$	+9-+9+	amount to 155 is		
	(a) 30	(b) 31	(c) 32	(d) none of these		
10.	The nth term of the ser	ies whose sum to n tern	ns is $5n^2 + 2n$ is			
	(a) 3n – 10	(b) 10n – 2	(c) 10n – 3	(d) none of these		
11.	The 20 th term of the pro	ogression 1, 4, 7, 10	is			
-	(a) 58	(b) 52	(c) 50	(d) none of these		
12.	The last term of the ser	ies 5 7 9 to 21 term				
14.	(a) 44	(b) 43	(c) 45	(d) none of these		
		(-)		(-,		

6.8

13.	The last term of the A			
	(a) 8.7	(b) 7.8	(c) 7.7	(d) none of these
14.	The sum of the series 9 (a) -18900	9, 5, 1, to 100 terms i (b) 18900	s (c) 19900	(d) none of these
15.	The two arithmetic mea	ans between –6 and 14 i	S	
	(a) 2/3,1/3	(b) 2/3, $7\frac{1}{3}$	(c) $-2/3$, $-7\frac{1}{3}$	(d) none of these
16.	The sum of three intege	ers in AP is 15 and their	product is 80. The integ	gers are
	(a) 2, 8, 5		(c) 2, 5, 8	(d) 8, 5, 2
17.	The sum of n terms of	an AP is $3n^2 + 5n$. The	series is	
17.	(a) 8, 14, 20, 26		(c) 22, 68, 114,	(d) none of these
18.	The number of number		. ,	
-	(a) 5090	(b) 5097	(c) 5095	(d) none of these
19.	The pth term of an AP	is (3p – 1)/6. The sum o	f the first n terms of the	AP is
	(a) $n(3n+1)$	(b) $n/12(3n+1)$	(c) n/12 (3n – 1)	(d) none of these
20.	The arithmetic mean be	- Colline - A		
_0.	(a) 50		(c) 55	(d) none of these
21.	The 4 arithmetic means		2013	
	(a) 3, 13, 8, 18	(b) 18, 3, 8, 13	(c) 3, 8, 13, 18	(d) none of these
22.	The first term of an A.I		he first five terms and t	he first ten terms are
		opposite in sign. The 3 ¹		
		ि हिंग्रे हिंग्रे कि		
	(a) $6\frac{4}{11}$	(b) 6	(c) 4/11	(d) none of these
23.	The sum of a certain nu terms is	umber of terms of an AF	P series -8, -6, -4, is	s 52. The number of
	(a) 12	(b) 13	(c) 11	(d) none of these
24.	The 1 st and the last term of terms is	n of an AP are –4 and 14	6. The sum of the terms	is 7171. The number
	(a) 101	(b) 100	(c) 99	(d) none of these
25.	The sum of the series 3	$\frac{1}{2} + 7 + 10\frac{1}{2} + 14 + \dots$	To 17 terms is	
-	(a) 530	(b) 535	(c) 535 ¹ ⁄ ₂	(d) none of these
		· · /		
6.4	4 GEOMETRIC F	PROGRESSION (G.P.)	

If in a sequence of terms each term is constant multiple of the proceeding term, then the sequence is called a Geometric Progression (G.P). The constant multiplier is called the *common ratio*

Examples: 1) In 5, 15, 45, 135,..... common ratio is 15/5 = 3

- 2) In 1, $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{8}$, ... common ratio is ($\frac{1}{2}$) /1= $\frac{1}{2}$
- 3) In 2, -6, 18, -54, common ratio is (-6) / 2 =-3

MATHS

Illustrations: Consider the following series :-

(i) $1 + 4 + 16 + 64 + \dots$

Here second term / 1^{st} term = 4/1 = 4; third term / second term = 16/4 = 4

fourth term/third term = 64/16 = 4 and so on.

Thus, we find that, in the entire series, the ratio of any term and the term preceding it, is a constant.

(ii) $1/3 - 1/9 + 1/27 - 1/81 + \dots$

Here second term / 1^{st} term = (-1/9) / (1/3) = -1/3

third term / second term = (1/27) / (-1/9) = -1/3

fourth term / third term = (-1/81) / (1/27) = -1/3 and so on.

Here also, in the entire series, the ratio of any term and the term preceding one is constant.

The above mentioned series are known as Geometric Series.

Let us consider the sequence a, ar, ar^2 , ar^3 , ... 1^{st} term = a, 2^{nd} term = ar = ar 2^{-1} , 3^{rd} term = $ar^2 = ar^{3-1}$, 4^{rh} term = $ar^3 = ar^{4-1}$, Similarly nth term of GP $t_n = ar^{n-1}$ Thus, common ratio = $\frac{Any \text{ term}}{Preceding \text{ term}} = \frac{t_n}{t_{n-1}}$ = $ar^{n-1}/ar^{n-2} = r$

Thus, general term of a G.P is given by ar $^{n-1}$ and the general form of G.P. is $a + ar + ar^2 + ar^3 + \dots$

For example, $r = \frac{t_2}{t_1} = \frac{ar}{a}$

So
$$r = \frac{t_2}{t_1} = \frac{t_3}{t_2} = \frac{t_4}{t_3} = \dots$$

Example 1: If a, ar, ar², ar³, be in G.P. Find the common ratio.

Solution: 1^{st} term = a, 2^{nd} term = ar

Ratio of any term to its preceding term = ar/a = r = common ratio.

Example 2: Which term of the progression 1, 2, 4, 8,... is 256?

Solution : $a = 1, r = 2/1 = 2, n = ?t_n = 256$ $t_n = ar^{n-1}$ or $256 = 1 \times 2^{n-1}$ i.e., $2^8 = 2^{n-1}$ or, n - 1 = 8 i.e., n = 9

Thus 9th term of the G. P. is 256

6.5 GEOMETRIC MEAN

If a, b, c are in G.P we get $b/a = c/b \Rightarrow b^2 = ac$, b is called the geometric mean between a and c

Example 1: Insert 3 geometric means between 1/9 and 9.

-						
Solution:	1/9, -, -, -, 9					
	$a = 1/9, r = ?, n = 2 + 3 = 5, t_n = 9$					
we know	$t_n = ar^{n-1}$					
or	$1/9 \times r^{5-1} = 9$					
or	$r^4 = 81 = 3^4 \Longrightarrow r = 3$					
Thus	1^{st} G. M = 1/9 × 3 = 1/3					
	2^{nd} G. M = 1/3 × 3 = 1					
	3^{rd} G. M = 1×3 = 3					
Example 2: Fin	nd the G.P where 4^{th} term is 8 and 8^{th} term is 128/625					
Solution : Let	a be the 1 st term and r be the common ratio.					
	By the question $t_4 = 8$ and $t_8 = 128/625$					
So	$ar^3 = 8$ and $ar^7 = 128 / 625$					
Therefore $ar^7 / ar^3 = \frac{128}{625 \cdot 8} \implies r^4 = 16 / 625 = (\pm 2/5)^4 \implies r = 2/5 \text{ and } -2/5$						
Now $ar^3 = 8 \Longrightarrow a \times (2/5)^3 = 8 \Longrightarrow a = 125$						
Thus the G. P is						
	125, 50, 20, 8, 16/5,					
When $r = -2/3$	5 , a = -125 and the G.P is -125 , 50, -20 , 8, $-16/5$,					

Finally, the G.P. is 125, 50, 20, 8, 16/5,

or, -125, 50, -20, 8, -16/5,.....

Sum of first n terms of a G P

Let a be the 1^{st} term and r be the common ratio. So the 1^{st} n terms are a, ar, ar^2 , ar ⁿ⁻¹. If S be the sum of n terms,

$$\begin{split} S_n &= a + ar + ar^2 + \dots + ar^{n-1} \dots (i) \\ \text{Now } rS_n &= ar + ar^2 + \dots + ar^{n-1} + ar^n \dots (ii) \end{split}$$

MATHS

when r < 1

Subtracting (i) from (ii)

$$S_{n} - rS_{n} = a - ar^{n}$$
or
$$S_{n}(1 - r) = a (1 - r^{n})$$
or
$$S_{n} = a (1 - r^{n}) / (1 - r) \text{ when } r < 1$$

$$S_{n} = a (r^{n} - 1) / (r - 1) \text{ when } r > 1$$

If r = 1, then $S_n = a + a + a + \dots$ to n terms

If the nth term of the G. P be l then $\ell = ar^{n-1}$

Therefore,
$$S_n = (ar^n - a) / (r - 1) = (a r^{n-1} r - a) / (r - 1) = \frac{1r - a}{r - 1}$$

So, when the last term of the G. P is known, we use this formula.

Sum of infinite geometric series

Thus

i.e. Sum of G.P. upto infinity is $\frac{a}{1-r}$, where r < 1

 $S_{\mu} = \frac{a}{1-r}, r < 1$

Also, $S_{\mu} = \frac{a}{1-r}$, if -1<r<1.

Example 1: Find the sum of 1 + 2 + 4 + 8 + ... to 8 terms.,

Solution: Here a = 1, r = 2/1 = 2, n = 8Let $S = 1 + 2 + 4 + 8 + \dots$ to 8 terms $= 1 (2^8 - 1) / (2 - 1) = 2^8 - 1 = 255$ **Example 2:** Find the sum to n terms of $6 + 27 + 128 + 629 + \dots$ **Solution:** Required Sum = $(5 + 1) + (5^2 + 2) + (5^3 + 3) (5^4 + 4) + ...$ to n terms = $(5 + 5^2 + 5^3 + \dots + 5^n) + (1 + 2 + 3 + \dots + n \text{ terms})$ $= \{5 (5^{n} - 1) / (5 - 1)\} + \{n (n + 1) / 2\}$ $= \{5(5^{n}-1)/4\} + \{n(n+1)/2\}$

Example 3: Find the sum to n terms of the series

3 + 33 + 333 +

Solution: Let S denote the required sum.

i.e.
$$S = 3 + 33 + 333 + \dots$$
 to n terms
 $= 3 (1 + 11 + 111 + \dots$ to n terms)
 $= \frac{3}{9} (9 + 99 + 999 + \dots$ to n terms)
 $= \frac{3}{9} \{(10 - 1) + (10^2 - 1) + (10^3 - 1) + \dots + (10^n - 1)\}$
 $= \frac{3}{9} \{(10 + 10^2 + 10^3 + \dots + 10^n) - n\}$
 $= \frac{3}{9} \{10 (1 + 10 + 10^2 + \dots + 10^{n-1}) - n\}$
 $= \frac{3}{9} [\{10 (10^n - 1) / (10 - 1)\} - n]$
 $= \frac{3}{81} (10^{n+1} - 10 - 9n)$
 $= \frac{1}{27} (10^{n+1} - 9n - 10)$
Example 4: Find the sum of n terms of the series $0.7 + 0.777 + \dots$ to n terms
Solution : Let S denote the required sum.

i.e.
$$S = 0.7 + 0.77 + 0.777 + \dots$$
 to n terms
 $= 7 (0.1 + 0.11 + 0.111 + \dots$ to n terms)
 $= \frac{7}{9} (0.9 + 0.99 + 0.999 + \dots$ to n terms)
 $= \frac{7}{9} \{(1 - 1/10) + (1 - 1/10^2) + (1 - 1/10^3) + \dots + (1 - 1/10^n)\}$
 $= \frac{7}{9} \{n - \frac{1}{10} (1 + 1/10 + 1/10^2 + \dots + 1/10^{n-1})\}$
So $S = \frac{7}{9} \{n - \frac{1}{10} (1 - 1/10^n)/(1 - 1/10)\}$
 $= \frac{7}{9} \{n - (1 - 10^{-n})/9)\}$
 $= \frac{7}{81} \{9n - 1 + 10^{-n}\}$

Example 5: Evaluate 0.2175 using the sum of an infinite geometric series.

MATHS

Solution: $0.2175 = 0.2175757575 \dots$

$$0.21 \times 5 \ll 0.21 + 0.0075 + 0.000075 + \dots$$

$$= 0.21 + 75 (1 + 1/10^{2} + 1/10^{4} + \dots) / 10^{4}$$

$$= 0.21 + 75 \{1 / (1 - 1/10^{2}) / 10^{4}$$

$$= 0.21 + (75/10^{4}) \times 10^{2} / 99$$

$$= 21/100 + (^{3}_{4}) \times (1/99)$$

$$= 21/100 + 1/132$$

$$= (693 + 25) / 3300 = 718 / 3300 = 359 / 1650$$

Example 6: Find three numbers in G. P whose sum is 19 and product is 216.

Solution: Let the 3 numbers be a/r, a, ar.

According to the question $a/r \times a \times ar = 216$

or $a^3 = 6^3 => a =6$ So the numbers are 6/r, 6, 6r6/r + 6 + 6r = 19Again 6/r + 6r = 13or $6 + 6r^2 = 13r$ or $6r^2 - 13r + 6 = 0$ or $6r^2 - 4r - 9r + 6 = 0$ or 2r(3r - 2) - 3(3r - 2) = 2or (3r-2)(2r-3) = 0 or, r = 2/3, 3/2or So the numbers are $6/(2/3), 6, 6 \times (2/3) = 9, 6, 4$ $6/(3/2), 6, 6 \times (3/2) = 4, 6, 9$ or Exercise 6 (B) Choose the most appropriate option (a), (b), (c) or (d) The 7^{th} term of the series 6, 12, 24,.....is 1. (a) 384 (d) none of these (b) 834 (c) 438 2. t_{s} of the series 6, 12, 24,... is (a) 786 (b) 768 (c) 867 (c) none of these t_{12} of the series -128, 64, -32,is 3. (a) - 1/16(b) 16 (c) 1/16 (d) none of these 4. The 4^{th} term of the series 0.04, 0.2, 1, ... is (a) 0.5 (b) ½ (c) 5 (d) none of these

COMMON PROFICIENCY TEST

				and the second second
5.	The last term of the series (a) 512	ies 1, 2, 4, to 10 term (b) 256	s is (c) 1024	(d) none of these
).		()		(d) none of these
•	The last term of the ser (a) 297	(b) 729		(d) none of these
	(a) 297 The last term of the cor		(c) 927	(d) none of these
•	The last term of the ser $(a) x^{28}$			(d) none of these
	(a) x^{28}	(b) $1/x$	(c) $1/x^{28}$	(d) none of these
	The sum of the series – (a) –1094	(b) 1094	(c) – 1049	(d) none of these
	The sum of the series 24	4, 3, 8, 1, 2, 7, to 8 ter	ms is	
	(a) 36	(b) $\left(36\frac{13}{30}\right)$	(c) $36\frac{1}{9}$	(d) none of these
0.	The sum of the series \neg	$\frac{1}{\sqrt{3}} + 1 + \frac{3}{\sqrt{3}} + \dots + \frac{100}{18}$	terms is	
	(a) 9841 $\frac{(1+\sqrt{3})}{\sqrt{3}}$	(b) 9841	(c) $\frac{9841}{\sqrt{3}}$	(d) none of these
l.	The second term of a G (a) 16, 36, 24, 54,	P is 24 and the fifth te (b) 24, 36, 53,		(d) none of these
2.	The sum of 3 numbers (a) 3, 27, 9	of a G P is 39 and their (b) 9, 3, 27	product is 729. The nun (c) 3, 9, 27	nbers are (d) none of these
3.	In a G. P, the product o (a) 3/2			(d) none of these
1 .	If you save 1 paise toda your total savings in tw (a) Rs. 163	vo weeks will be	y 4 paise the succeeding (c) Rs. 163.83	-
5.	Sum of n terms of the s (a) $4/9 \{ 10/9 (10^{n} - 1) (c) 4/9 (10^{n} - 1) - n \}$	series 4 + 44 + 444 +		
5.	Sum of n terms of the s (a) $1/9 \{n - (1 - (0.1)^n (0$		1 + is (b) 1/9 {n – (1–(0.1) ⁿ) (d) none of these	/9}
7.	The sum of the first 20 t ratio is	erms of a G. P is 244 tir	nes the sum of its first 10) terms. The comm
	(a) $\pm \sqrt{3}$	(b) ±3	(c) $\sqrt{3}$	(d) none of thes
	Sum of the series $1 + 3$	+ 9 + 27 +is 364. T	he number of terms is	

L

19.	The product of 3 numb (a) 9, 3, 27		1	9. The numbers are (d) none of these		
20.	The sum of the series 1 (a) $2^n - 1$			(d) none of these		
				(d) none of these		
21.	The sum of the infinite	GP 14, -2, +2/7, -2/	'49, + is			
	(a) $4\frac{1}{12}$	(b) $12\frac{1}{4}$	(c) 12	(d) none of these		
22.	The sum of the infinite	G. P. 1 - 1/3 + 1/9 - 1/2	27 + is			
	(a) 0.33	(b) 0.57	(c) 0.75	(d) none of these		
23.	The number of terms to	be taken so that $1 + 2 +$	- 4 + 8 + will be 8191 is			
	(a) 10	(b) 13	(c) 12	(d) none of these		
24.	. Four geometric means between 4 and 972 are					
	(a) 12,30,100,324		(c) 10,36,108,320	(d) none of these		

Illustrations :

(I) A person is employed in a company at Rs. 3000 per month and he would get an increase of Rs. 100 per year. Find the total amount which he receives in 25 years and the monthly salary in the last year.

Solution:

He gets in the 1st year at the Rate of 3000 per month; In the 2nd year he gets at the rate of Rs. 3100 per month; In the 3rd year at the rate of Rs. 3200 per month so on,

In the last year the monthly salary will be

Rs. $\{3000 + (25 - 1) \times 100\} =$ Rs. 5400

Total amount = Rs. 12 (3000 + 3100 + 3200 +... + 5400) $\left[\text{Use S}_n = \frac{n}{2}(a+l) \right]$

= Rs. 12 × 25/2 (3000 + 5400) = Rs. 150 × 8400 = Rs. 12,60,000

(II) A person borrows Rs. 8,000 at 2.76% Simple Interest per annum. The principal and the interest are to be paid in the 10 monthly instalments. If each instalment is double the preceding one,

find the value of the first and the last instalment.

Solution:

Interest to be paid = $2.76 \times 10 \times 8000 / 100 \times 12 = \text{Rs}. 184$

Total amount to be paid in 10 monthly instalment is Rs. (8000 + 184) = Rs. 8184

The instalments form a G P with common ratio 2 and so Rs. $8184 = a (2^{10} - 1) / (2 - 1)$,

 $a = 1^{st}$ instalment

Here a = Rs. 8184 / 1023 = Rs. 8

The last instalment = ar $^{10-1}$ = 8 × 2⁹ = 8 × 512 = Rs. 4096

Exercise 6 (c)

Choose the most appropriate option (a), (b), (c) or (d)

1.	Three numbers are in they form a G. P. The	AP and their sum is 21 numbers are	1. If 1, 5, 15 are added	to them respectively,
	(a) 5,7,9	(b) 9, 5, 7	(c) 7, 5, 9	(d) none of these
2.		$/3^2 + 1/3^3 + \ldots + 1/3^{n-2}$		
	(a) 2/3		(c) 4/5	(d) none of these
3.		series $1 + 2/3 + 4/9 + .$		
	(a) 1/3	(b) 3	(c) 2/3	(d) none of these
4.	The sum of the first two common ratio is	o terms of a G.P. is $5/3$,	of the series is 3. The
	(a) 1/3	(b) 2/3	(c) $-2/3$	(d) none of these
5.	If p, q and r are in A.P.	and x, y, z are in G.P. t	hen x ^{q-r} . y ^{r-p} . z ^{p-q} is equ	al to
	(a) 0		(c) 1	(d) none of these
6.	The sum of three numb	pers in G.P. is 70. If the t	wo extremes by multipl	lied each by 4 and the
		ts are in AP. The numbe	ers are	2
	(a) 12, 18, 40	(b) 10, 20, 40	(c) 40, 20, 10	(d) none of these
7.	The sum of 3 numbers	in A.P. is 15. If 1, 4 and	19 be added to them re	spectively, the results
	are is G. P. The number	rs are (b) 2, 5, 8	25.	
	(a) 26, 5, –16	Allan,		(d) none of these
8.	Given x, y, z are in G.P.			
	(a) A.P.	(b) G.P.	(c) Both A.P. and G.I	P. (d) none of these
9.	If the terms $2x$, $(x+10)a$	and (3x+2) be in A.P., th	ne value of x is	
	(a) 7	(b) 10	(c) 6	(d) none of these
10.	If A be the A.M. of two	positive unequal quan	tities x and y and G be	their G. M, then
	(a) A < G	(b) A>G		(d) A≤G
11.	The A.M. of two positiv	ve numbers is 40 and th	eir G. M. is 24. The nur	nbers are
	(a) (72, 8)	(b) (70, 10)	(c) (60, 20)	(d) none of these
12.	Three numbers are in A	A.P. and their sum is 15	5. If 8, 6, 4 be added to t	hem respectively, the
	numbers are in G.P. Th			1 57
	(a) 2, 6, 7	(b) 4, 6, 5	(c) 3, 5, 7	(d) none of these
13.	The sum of four num	bers in G. P. is 60 and	the A.M. of the 1 st ar	nd the last is 18. The
	numbers are			
	(a) 4, 8, 16, 32	(b) 4, 16, 8, 32	(c) 16, 8, 4, 20	(d) none of these

14.	A sum of Rs. 6240 is p than the proceeding ins			lment is Rs. 10 more
	(a) Rs. 36	(b) Rs. 30	(c) Rs. 60	(d) none of these
15.	The sum of $1.03 + (1.03)^n$ (a) 103 { $(1.03)^n - 1$ }			(d) none of these
16.	If x, y, z are in A.P. and (a) $(x - z)^2 = 4x$	x, y, $(z + 1)$ are in G.P. (b) $z^2 = (x - y)$		(d) none of these
17.	The numbers x, 8, y ar are	e in G.P. and the num	oers x, y, –8 are in A.P.	The value of x and y
	(a) (-8, -8)	(b) (16, 4)	(c) (8, 8)	(d) none of these
18.	The nth term of the seri	es 16, 8, 4, Is 1/2 ¹⁷ . T	The value of n is	
	(a) 20	(b) 21	(c) 22	(d) none of these
19.	The sum of n terms of	a G.P. whose first term	ns 1 and the common ra	tio is $1/2$, is equal to
	$1\frac{127}{128}$. The value of n is			
	(a) 7	(b) 8	(c) 6	(d) none of these
20.	t_4 of a G.P. in x, $t_{10} = y$ a (a) $x^2 = yz$	nd $t_{16} = z$. Then (b) $z^2 = xy$	(c) $y^2 = zx$	(d) none of these
21.	If x, y, z are in G.P., the	n El MA		
	(a) $y^2 = xz$ (b) y (1 122 1 1/1/1	(c) $2y = x+z$	(d) none of these
22.	The sum of all odd num			
	(a) 11600	(b) 12490	(c) 12500	(d) 24750
23.	The sum of all natural (a) 28405	numbers between 500 (b) 24805	and 1000 which are div (c) 28540	visible by 13, is (d) none of these
24.	If unity is added to the sum is	sum of any number of	terms of the A.P. 3, 5,	7, 9, the resulting
	(a) 'a' perfect cube	(b) 'a' perfect square	(c) 'a' number	(d) none of these
25.	The sum of all natural r (a) 10200	numbers from 100 to 30 (b) 15200	0 which are exactly divi (c) 16200	isible by 4 or 5 is (d) none of these
26.	The sum of all natural (a) 2200	numbers from 100 to 3 (b) 2000	300 which are exactly d (c) 2220	ivisible by 4 and 5 is (d) none of these
27.	A person pays Rs. 975 instalment is Rs. 100. Th (a) 10 months	5		5

6.18

- 28. A person saved Rs. 16,500 in ten years. In each year after the first year he saved Rs. 100 more than he did in the preceding year. The amount of money he saved in the 1st year was (a) Rs. 1000 (b) Rs. 1500 (c) Rs. 1200 (d) none of these
 20. At 10% C L man a sum of money accumulate to Re 0(25 in 5 more). The sum invested of the saved in the sav
- 29. At 10% C.I. p.a., a sum of money accumulate to Rs. 9625 in 5 years. The sum invested initially is
 (a) Rs. 5976.37 (b) Rs. 5970 (c) Rs. 5975 (d) Rs. 5370.96
- 30. The population of a country was 55 crose in 2005 and is growing at 2% p.a C.I. the population is the year 2015 is estimated as
 - (a) 5705 (b) 6005 (c) 6700 (d) none of these

ANSWERS

Exe	Exercise 6 (A)														
1.	b	2.	а	3.	а	4.	а	5.	а	6.	b	7.	с	8.	d
9.	a, b	10	С	11.	а	12.	с	13.	b	14.	а	15.	b	16.	c, d
17.	а	18.	b	19.	b	20.	с	21.	с	22.	а	23.	b	24.	а
25.	с														
Exe	Exercise 6 (B)														
1.	a	2.	b	3.	с	4.	с	5.	а	6.	b	7.	с	8.	а
9.	b	10.	а	11.	с	12.	с	13.	а	14.	с	15.	a	16.	b
17.	а	18.	b	19.	С	20.	а	21.	b	22.	с	23.	b	24.	d
Exe	rcise	6 (C)					~		~						
1.	a	2.	d	3.	b	4.	b, c	-5.	c	6.	b, c	7.	a, b	8.	a
9.	c	10.	b	11.	а	12.		13.	aC	14.	d	15.	b	16.	a
17.	b	18.	с	19.	b	20.	C	21.	a	22.	d	23.	а	24.	b
25.	c	26.	а	27.	b	28.	¢	29.	d	30.	d				
				•		E -		- and the second	Sur -	13				•	

6.20

A	DDITIONAL QUEST	ION BANK		
1.	If <i>a</i> , <i>b</i> , <i>c</i> are in A.P. as well	as in G.P. then –		
	(A) They are also in H.P. (Harmonic Progression)	(B) Their reciproca	ls are in A.P.
	(C) Both (A) and (B) are tr	ue	(D) Both (A) and (B) are false
2.	If <i>a</i> , <i>b</i> , <i>c</i> be respective a(q-r)+b(r-p)+c(p-q)		terms of an A.	P. the value of
	(A) 0 (B) 1	(C) –1	(D) None	
3.	If the p^{th} term of an A.P. i	s q and the q^{th} term is p	the value of the r^{th}	term is
	(A) $p - q - r$	(B) $p + q - r$		
	(C) $p + q + r$	(D) None		
4.	If the p^{th} term of an A.P. is	q and the q^{th} term is p t	he value of the $(p + $	<i>q</i>) th term is
	(A) 0	(B) 1 5	(C) -1	(D) None
5.	The sum of first <i>n</i> natural	number is		
	 (A) (n/2)(n+1) (C) [(n/2)(n+1)]² 	 (B) (n/6)(n+1)(2n+1) (D) None 		
6.	The sum of square of first	<i>n</i> natural number is	Ş	
	(A) $(n/2)(n+1)$ (C) $[(n/2)(n+1)]^2$	(B) (<i>n</i> /6)(<i>n</i> +1)(2 <i>n</i> +1) (D) None		
7.	The sum of cubes of first n	natural number is	·	
	 (A) (n/2)(n+1) (C) [(n/2)(n+1)]² 	(B) (<i>n</i> /6)(<i>n</i> +1)(2 <i>n</i> +1) (D) None		
8.	The sum of a series in A.P. number of terms is		g 17 and the commo	n difference –2. the
	(A) 6	(B) 12	(C) 6 or 12	(D) None
9.	Find the sum to <i>n</i> terms of	(1-1/n) + (1-2/n) + (1-3/	/n) +	
	(A) ½(<i>n</i> –1)	(B) ¹ / ₂ (<i>n</i> +1)	(C) (<i>n</i> -1)	(D) (<i>n</i> +1)
10.	If <i>Sn</i> the sum of first <i>n</i> term	s in a series is given by	$2n^2 + 3n$ the series is	in
	(A) A.P.	(B) G.P.	(C) H.P.	(D) None

MATHS

— — |

SE	QUENCE AND SERIES-ARI	THMETIC AND GEOME	TRIC PROGRESSION	IS CON
11.	The sum of all natural nur	nbers between 200 and	400 which are divisi	ible by 7 is
	(A) 7730	(B) 8729	(C) 7729	(D) 8730
12.	The sum of natural number	ers upto 200 excluding	those divisible by 5	is
	(A) 20100	(B) 4100	(C) 16000	(D) None
13.	If <i>a</i> , <i>b</i> , <i>c</i> be the sums $(a/p)(q-r)+(b/q)(r-p)+(a/p)(r-p)(r-p)(r-p)(r-p)(r-p)(r-p)(r-p)(r-$		pectively of an A	.P. the value o
	(A) 0	(B) 1	(C) –1	(D) None
14.	If S_1, S_2, S_3 be the respective $S_3 \div (S_2 - S_1)$ is given by		ms of <i>n</i> , 2 <i>n</i> , 3 <i>n</i> an	A.P. the value of
	(A) 1	(B) 2	(C) 3	(D) None
15.	The sum of <i>n</i> terms of two the two series are equal.	ACCOUNTER THUS	7n-5)/(5n+17) . Then t	term c
	(A) 12	(B) 6	(C)3	(D) None
16.	Find three numbers in A.P.	whose sum is 6 and the	e product is –24	
	(A) -2, 2, 6	(B) -1, 1, 3	(C) 1, 3, 5	(D) 1, 4, 7
17.	Find three numbers in A.P	. whose sum is 6 and th	re sum of whose squ	are is 44.
	(A) -2, 2, 6	(B) -1, 1, 3	(C) 1, 3, 5	(D) 1, 4, 7
18.	Find three numbers in A.P	. whose sum is 6 and th	ne sum of their cube	s is 232.
	(A) -2, 2, 6	(B) -1, 1, 3	(C) 1, 3, 5	(D) 1, 4, 7
19.	Divide 12.50 into five parts of 2:3	in A.P. such that the fin	rst part and the last j	part are in the rati
	(A) 2, 2.25, 2.5, 2.75, 3	(B) -2, -2.25, -2.5, -2	.75, –3	
	(C) 4, 4.5, 5, 5.5, 6	(D) -4, -4.5, -5, -5.5,	-6	
20.	If a , b , c are in A.P. then the	e value of $(a^3 + 4b^3 + c^3)/[$	$b(a^2 + c^2)$] is	
	(A) 1	(B) 2	(C) 3	(D) None
21.	If <i>a</i> , <i>b</i> , <i>c</i> are in A.P. then th	e value of $(a^2 + 4ac + c^2)$	/(ab + bc + ca) is	
	(A) 1	(B) 2	(C) 3	(D) None

_

6.22

ΙL

22.	If <i>a</i> , <i>b</i> , <i>c</i> are in A.P. then	(a/bc) (b + c), (b/ca) (c + a	a), (c/ab) (a + b) are in	۱
	(A) A.P.	(B) G.P.	(C) H.P.	(D) None
23.	If a , b , c are in A.P. then a	$^{2}(b+c), b^{2}(c+a), c^{2}(a+b)$) are in	
	(A) A.P.	(B) G.P.	(C) H.P.	(D) None
24.	If $(b+c)^{-1}$, $(c+a)^{-1}$, $(a+b)^{-1}$	are in A.P. then a^2 , b^2	, c ² are in	
	(A) A.P.	(B) G.P.	(C) H.P.	(D) None
25.	If a^2 , b^2 , c^2 are in A.P. the	nen (b + c), (c + a), (a + b) are in	
	(A) A.P.	(B) G.P.	(C) H.P.	(D) None
26.	If a^2 , b^2 , c^2 are in A.P. t	hen $a/(b + c)$, $b/(c + a)$, c	((a + b) are in	·
	(A) A.P.	(B) G.P.	(C) H.P.	(D) None
27.	If $(b + c - a)/a$, $(c + a - b)/b$, (a)	a+b–c)/c are in A.P. th	en a, b, c are in	
	(A) A.P.	(B) G.P.	(C) H.P.	(D) None
28.	If $(b-c)^2$, $(c-a)^2$, $(a-b)^2$ at	e in A.P. then $(b - c)$, $(c$	– a), (a – b) are in	
	(A) A.P.	(B) G.P.	(C) H.P.	(D) None
29.	If $a b c$ are in A.P. then (b	e + c), (c + a), (a + b) are in	۱	
	(A) A.P.	(B) G.P.	(C) H.P.	(D) None
30.	Find the number which sh 3, 5, 7, 9, 11resulting		um of any number o	f terms of the A.P.
	(A) –1	(B) 0	(C) 1	(D) None
31.	The sum of <i>n</i> terms of an <i>A</i>	A.P. is $2n^2 + 3n$. Find th	e <i>n</i> th term.	
	(A) 4n + 1	(B) 4n - 1	(C) 2n + 1	(D) 2n - 1
32.	The p^{th} term of an A.P. is	$1/q$ and the q^{th} term is 1	/p. The sum of the p	ng th term is
	(A) $\frac{1}{2}(pq+1)$	(B) $\frac{1}{2}$ (pq-1)	(C) pq+1	(D) pq-1

Copyright -The Institute of Chartered Accountants of India

_

33.	33. The sum of <i>p</i> terms of an A.P. is <i>q</i> and the sum of <i>q</i> terms is <i>p</i> . The sum of $p + q$ term					
	(A) - (p + q)	(B) p + q	(C) $(p - q)^2$	(D) $P^2 - q^2$		
34.	If $S_{1_2}S_{2_2}S_{3_3}$ be the sums of respective common different	<i>n</i> terms of three A.P.s then three 1, 2, 3 then $(S_1 + S_3)$	the first term of each $) / S_2$ is	being unity and the		
	(A) 1	(B) 2	(C) –1	(D) None		
35.	The sum of all natural nur	nbers between 500 and 1	000, which are divisi	ible by 13, is		
	(A) 28400	(B) 28405	(C) 28410	(D) None		
36.	The sum of all natural nu	mbers between 100 and	300, which are divis	ible by 4, is		
	(A) 10200	(B) 30000	(C) 8200	(D) 2200		
37.	The sum of all natural nur 	nbers from 100 to 300 exe	cluding those, which	n are divisible by 4, is		
	(A) 10200	(B) 30000	(C) 8200	(D) 2200		
38.	The sum of all natural nur	mbers from 100 to 300, v	vhich are divisible b	y 5, is		
	(A) 10200	(B) 30000	(C) 8200	(D) 2200		
39.	The sum of all natural nur	mbers from 100 to 300, w	which are divisible b	y 4 and 5, is		
	(A) 10200	(B) 30000	C (C) 8200	(D) 2200		
40.	The sum of all natural nur	mbers from 100 to 300, w	which are divisible b	y 4 or 5, is		
	(A) 10200	(B) 8200	(C) 2200	(D) 16200		
41.	If the <i>n</i> terms of two A. is	P.s are in the ratio (3n-	+4) : (n+4) the ratio	o of the fourth term		
	(A) 2	(B) 3	(C) 4	(D) None		
42.	If <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> are in A.P. the	n				
	(A) $a^2 - 3b^2 + 3c^2 - d^2 = 0$	(B) $a^2+3b^2+3c^2+d^2=0$	0 (C) $a^2 + 3b^2 + 3c^2 - 3c$	$-d^2=0$ (D) None		
43.	If <i>a</i> , <i>b</i> , <i>c</i> , <i>d</i> , <i>e</i> are in A.P. t	hen				
	(A) $a - b - d + e = 0$	(B) $a - 2c + e = 0$	(C) $b - 2c + d = 0$	0 (D) all the above		
44.	The three numbers in A.I	P. whose sum is 18 and	product is 192 are	·		
	(A) 4, 6, 8	(B) -4, -6, -8	(C) 8, 6, 4			
	(D) both (A) and (C)					

6.24

45.	The three numbers in A.P., whose sum is 27 and the sum of their squares is 341, are							
	(A) 2, 9, 16 (B)) 16, 9, 2	(C) both (A) an	d (B)	(D) -2, -9, -16			
46.	The four numbers in	A.P., whose	sum is 24 and t	heir product is 945,	are			
	(A) 3, 5, 7, 9	(B) 2,	4, 6, 8	(C) 5, 9, 13, 17	(D) None			
47.	The four numbers in	A.P., whose su	um is 20 and the s	sum of their squares	is 120, are			
	(A) 3, 5, 7, 9	(B) 2,	4, 6, 8	(C) 5, 9, 13, 17	(D) None			
48.	The four numbers in the first and fourth		e sum of second	and third being 22 a	and the product of			
	(A) 3, 5, 7, 9	(B) 2,	4, 6, 8	(C) 5, 9, 13, 17	(D) None			
49.	The five numbers in	A.P. with thei	r sum 25 and the	e sum of their square	es 135 are			
	(A) 3, 4, 5, 6, 7	(B) 3,	3.5, 4, 4.5, 5	(C) -3, -4, -5, -6, -	-7			
	(D) -3, -3.5, -4, -4.5	5, -5						
50.	The five numbers in	A.P. with the	sum 20 and proc	luct of the first and l	ast 15 are			
	(A) 3, 4, 5, 6, 7	(B) 3,	3.5, 4, 4.5, 5	(C) -3, -4, -5, -6, -	-7			
	(D) -3, -3.5, -4, -4.5	5, -5	Mar Mar					
51.	The sum of <i>n</i> terms	of 2, 4, 6, 8	is the gring survey	Į				
	(A) n(n+1)	(B) (n	/2)(n+1)	(C) n(n-1)	(D) (n/2)(n-1)			
52.	The sum of <i>n</i> terms of	of a+b, 2a, 3a-	-b, is					
	(A) n(a–b)+2b	(B) n(a	a+b)	(C) both the above	(D) None			
53.	The sum of <i>n</i> terms of (A) $(x + y)^2 - 2(n - 1)^2$	-			(D) None			
54.	The sum of n terms							
	(A) 0	(B) (1,	/2)(n-1)	(C) $(1/2)(n+1)$	(D) None			
55.	The sum of <i>n</i> terms (A) $(n/2)(4n^{2}+5n-1)$			(C) $(n/2)(4n^2-5n-1)$	(D) None			
	(A) $(n/2)(4n^2+5n-1)$	(B) n(4	±11 ² +311 - 1)	(C) (11/2)(411-31-1)	(D) induce			

— — |

56.	b. The sum of <i>n</i> terms of 1^2 , 3^2 , 5^2 , 7^2 ,is									
	(A) $(n/3)(4n^2 - 1)$	(B) $(n/2)(4n^2 - 1)$	(C) $(n/3)(4n^2 + 1)$	(D) None						
57.	The sum of <i>n</i> terms of 1, $(1 + 2)$, $(1 + 2 + 3)$ is									
	(A) (<i>n</i> /3)(<i>n</i> +1)(<i>n</i> -2)	(B) (<i>n</i> /3)(<i>n</i> +1)(<i>n</i> +2)	(C) <i>n</i> (<i>n</i> +1)(<i>n</i> +2)	(D) None						
58.	The sum of n terms of the	The sum of <i>n</i> terms of the series $1^2/1+(1^2+2^2)/2+(1^2+2^2+3^2)/3+\dots$ is								
	(A) $(n/36)(4n^2 + 15n + 17)$		(B) (<i>n</i> /12)(4 <i>n</i> ² +15 <i>n</i>	<i>t</i> +17)						
	(C) (<i>n</i> /12)(4 <i>n</i> ² +15 <i>n</i> +17)		(D) None							
59.	The sum of <i>n</i> terms of the s	series 2.4.6 + 4.6.8 + 6.8.1	10 + is							
	(A) $2n(n^3+6n^2+11n+6)$		(B) $2n(n^3-6n^2+11n$	6)						
	(C) $n(n^3+6n^2+11n+6)$		(D) $n(n^3+6n^2+11n-$	6)						
60.	The sum of <i>n</i> terms of the s	series $1.3^2 + 4.4^2 + 7.5^2 + 3.3^2$	10.6 ² +is							
	(A) $(n/12)(n+1)(9n^2+49n+4)$	(B) $(n/12)(n+1)(9n^2+49n+44)+8n$								
	(C) $(n/6)(2n+1)(9n^2+49n+4)$	4) - 8 <i>n</i>	(D) None							
61.	The sum of <i>n</i> terms of the s	series 4 + 6 + 9 + 13	⇒ is							
	(A) $(n/6)(n^2+3n+20)$	(B) (<i>n</i> /6)(<i>n</i> +1)(<i>n</i> +2)	(C) (n/3)(n+1)(n+2) (D) None						
62.	The sum to <i>n</i> terms of the s	series 11, 23, 59, 167	is							
	(A) $3^{n+1}+5n-3$	(B) $3^{n+1}+5n+3$	(C) 3 ^{<i>n</i>} +5n-3	(D) None						
63.	The sum of <i>n</i> terms of the s	series 1/(4.9)+1/(9.14)+1/	/(14.19)+1/(19.24)+	is						
	(A) $(n/4)(5n+4)^{-1}$	(B) (<i>n</i> /4)(5 <i>n</i> +4)	(C) $(n/4)(5n-4)^{-1}$	(D) None						
64.	The sum of <i>n</i> terms of the s	series 1 + 3 + 5 +	Is							
	(A) n^2	(B) $2n^2$	(C) $n^2/2$	(D) None						
65.	The sum of <i>n</i> terms of the s	series 2 + 6 + 10 +	is							
	(A) $2n^2$	(B) n^2	(C) $n^2/2$	(D) $4n^2$						
66.	The sum of <i>n</i> terms of the s	series 1.2 + 2.3 + 3.4 +	Is							
	(A) $(n/3)(n+1)(n+2)$	(B) (<i>n</i> /2)(<i>n</i> +1)(<i>n</i> +2)	(C) (<i>n</i> /3)(<i>n</i> +1)(<i>n</i> -2)(D) None							

6.26

67. The sum of *n* terms of the series $1.2.3 + 2.3.4 + 3.4.5 + \dots$ is (A) (n/4)(n+1)(n+2)(n+3)(B) (n/3)(n+1)(n+2)(n+3)(C) (n/2)(n+1)(n+2)(n+3)(D) None 68. The sum of *n* terms of the series $1.2+3.2^2+5.2^3+7.2^4+...$ is (A) $(n-1)2^{n+2}-2^{n+1}+6$ (B) $(n+1)2^{n+2}-2^{n+1}+6$ (C) $(n-1)2^{n+2}-2^{n+1}-6$ (D) None 69. The sum of *n* terms of the series 1/(3.8)+1/(8.13)+1/(13.18)+... is (B) $(n/2)(5n+3)^{-1}$ (C) $(n/2)(5n-3)^{-1}$ (A) $(n/3)(5n+3)^{-1}$ (D) None 70. The sum of *n* terms of the series 1/1+1/(1+2)+1/(1+2+3)+... is (A) $2n(n+1)^{-1}$ (B) *n*(*n*+1) (C) $2n(n-1)^{-1}$ (D) None 71. The sum of *n* terms of the series $2^2+5^2+8^2+\ldots$ is (A) $(n/2)(6n^2+3n-1)$ (B) $(n/2)(6n^2-3n-1)$ (C) $(n/2)(6n^2+3n+1)$ (D) None 72. The sum of *n* terms of the series $1^2+3^2+5^2+\ldots$ is (A) $\frac{n}{3}$ (4 n^2 – 1) (B) $n^2(2n^2+1)$ (C) *n*(2*n*–1) (D) n(2n+1)73. The sum of *n* terms of the series 1.4 + 3.7 + 5.10 + ... is (B) $(n/2)(5n^2+4n-1)$ (A) $(n/2)(4n^2+5 1)$ (D) None (C) $(n/2)(4n^2+5n+1)$ 74. The sum of *n* terms of the series $2.3^2 + 5.4^2 + 8.5^2 + \dots$ is (A) $(n/12)(9n^3+62n^2+123n+22)$ (B) $(n/12)(9n^3-62n^2+123n-22)$ (C) $(n/6)(9n^3+62n^2+123n+22)$ (D) None 75. The sum of *n* terms of the series $1 + (1 + 3) + (1 + 3 + 5) + \dots$ is (A) (n/6)(n+1)(2n+1)(B) (n/6)(n+1)(n+2)(C) (n/3)(n+1)(2n+1)(D) None 76. The sum of *n* terms of the series $1^2 + (1^2 + 2^2) + (1^2 + 2^2 + 3^2) + \dots$ is (A) $(n/12)(n+1)^2(n+2)$ (B) $(n/12)(n-1)^2(n+2)$ (C) $(n/12)(n^2-1)(n+2)$ (D) None

77.	. The sum of <i>n</i> terms of the series $1+(1+1/3)+(1+1/3+1/3^2)+\dots$ is						
	(A) $(3/2)(1-3^{-n})$	(B) $(3/2)[n-(1/2)(1-3^{-n})]$	(C) Both	(D) None			
78.	The sum of n terms of the s	eries <i>n</i> .1+(<i>n</i> -1).2+(<i>n</i> -2).3	+ is				
	(A) (n/6)(n+1)(n+2)	(B) $(n/3)(n+1)(n+2)$	(C) $(n/2)(n+1)(n+2)$	(D) None			
79.	The sum of n terms of the s	eries 1 + 5 + 12 + 22 + .	is				
	(A) $(n^2/2)(n+1)$	(B) n^2 (<i>n</i> +1)	(C) $(n^2/2)(n-1)$	(D) None			
80.	The sum of n terms of the s	veries 4 + 14 + 30 + 52 +	80 + is				
	(A) $n(n+1)^2$	(B) $n(n-1)^2$	(C) $n(n^2-1)$	(D) None			
81.	The sum of n terms of the s	eries 3 + 6 + 11 + 20 + 3	37 + is				
	(A) $2^{n+1} + (n/2)(n+1) - 2$	(B) $2^{n+1} + (n/2)(n+1) - 1$	(C) $2^{n+1} + (n/2)(n-1)$ -	2 (D) None			
82.	The n^{th} terms of the series i	$1 \le 1/(4.7) + 1/(7.10) + 1$	/(10.13) + is				
	(A) $(1/3)[(3n+1)^{-1}-(3n+4)^{-1}]$		(B) $(1/3)[(3n-1)^{-1}-(3n-1)^{-1}]$	n+4) ⁻¹]			
	(C) $(1/3)[(3n+1)^{-1}-(3n-4)^{-1}]$		(D) None				
83.	In question No.(82) the sum		S.				
	(A) $(n/4)(3n+4)^{-1}$	(B) $(n/4)(3n-4)^{-1}$	(C) $(n/2)(3n+4)^{-1}$	(D) None			
84.	The sum of n terms of the set	eries $1^2/1+(1^2+2^2)/(1+2)$	+(1 ² +2 ² +3 ²)/(1+2+3)+	is			
	(A) (<i>n</i> /3)(<i>n</i> +2)	(B) (<i>n</i> /3)(<i>n</i> +1)	(C) (<i>n</i> /3)(<i>n</i> +3)	(D) None			
85.	The sum of <i>n</i> terms of the se	eries $1^3/1+(1^3+2^3)/2+(1^3+$	$(2^3+3^3)/3+$ is				
	(A) $(n/48)(n+1)(n+2)(3n+5)$		(B) (n/24)(n+1)(n+2))(3 <i>n</i> +5)			
	(C) $(n/48)(n+1)(n+2)(5n+3)$		(D) None				
86.	The value of $n^2 + +2n[1+2+3]$	++(n-1)] is					
	(A) n ³	(B) n ²	(C) <i>n</i>	(D) None			
87.	2^{4n} -1 is divisible by						
	(A) 15	(B) 4	(C) 6	(D) 64			

COMMON PROFICIENCY TEST

6.28

88.	3^n -2 <i>n</i> -1 is divisible by						
	(A) 15	(B) 4	(C) 6	(D) 64			
89.	<i>n</i> (<i>n</i> -1)(2 <i>n</i> -1) is divisible by (A) 15	(B) 4	(C) 6	(D) 64			
90.	7^{2n} +16 <i>n</i> -1 is divisible by						
	(A) 15	(B) 4	(C) 6	(D) 64			
91.	The sum of <i>n</i> terms of the	series whose n^{th} term 3	n^2 +2n is is given by	7			
	(A) $(n/2)(n+1)(2n+3)$		(B) $(n/2)(n+1)(3$	-2)			
	(C) $(n/2)(n+1)(3n-2)$		(D) (n/2)(n+1)(2n	n-3)			
92.	The sum of n terms of the	series whose n th term n	.2 ⁿ is is given by				
	(A) $(n-1)2^{n+1}+2$	(B) (n+1)2 ⁿ⁺¹ +2	(C) (n-1)2 ⁿ +2	(D) None			
93.	The sum of <i>n</i> terms of the	series whose <i>n</i> th term 5	$3^{n+1}+2n$ is is given	by			
	(A) $(5/2)(3^{n+2}-9)+n(n+1)$		(B) $(2/5)(3^{n+2}-9)+r$	n(n+1)			
	(C) $(5/2)(3^{n+2}+9)+n(n+1)$	the gring small	(D) None				
94.	If the third term of a G.P. is the square of the first and the fifth term is 64 the series would be						
	(A) $4 + 8 + 16 + 32 + \dots$	(B) 4 – 8 + 16 – 32 +					
	(C) both	(D) None					
95.	Three numbers whose sum they are in G.P. The number		they are added by	1, 4, 19 respectively			
	(A) 2, 5, 8	(B) 26, 5, –16	(C) Both	(D) None			
96.	If a, b, c are the p th , q th a is	nd r th terms of a G.P.	respectively the va	lue of a ^{q-r} .b ^{r-p} .c ^{p-q}			
	(A) 0	(B) 1	(C) –1	(D) None			
97.	If a, b, c are in A.P. and x,	, y, z in G.P. then the v	alue of $x^{b-c}.y^{c-a}.z^{a-b}$	^b is			
	(A) 0	(B) 1	(C) – 1	(D) None			

MATHS

98. If <i>a, b, c</i> are in A.P. and	r μ z in C.P. then the r	alue of $(x^b, x^c, z^a) + (x^c, z^a)$	$x^{a} z^{b}$ is
(A) 0	(B) 1	-	(D) None
99. The sum of <i>n</i> terms of th			(2) Hone
(A) $(7/9)[(1/9)(10^{n+1}-10)]$		(B) (9/10)[(1/9)(10	$n^{n+1}-10)-n$
	-		
(C) $(10/9)[(1/9)(10^{n+1}-1)]$	0)-n]	(D) None	
100. The least value of n for than 7000 is	which the sum of n terms	s of the series 1 + 3 +	-3^2 + is greater
(A) 9 (B) 10	(C) 8	(D) 7	
101. If 'S' be the sum, 'P' the then 'P' is the of	-	n of the reciprocals o	of <i>n</i> terms in a G.P.
(A) Arithmetic Mean	(B) Geometric Mean	(C) Harmonic Me	an (D) None
102. Sum upto ∞ of the series	s 8+4√2+4+ is		
(A) $8(2+\sqrt{2})$	(B) 8(2-√2)	(C) 4(2+√2)	(D) 4(2-√2)
103. Sum upto ∞ of the series		/	
(A) 19/24	(B) 24/19 years are the	C 5/24	(D) None
104. If $1+a+a^2+\dots = x$	and $1+b+b^2+a = y$	then $1+ab+a^2b^2+$	a is given by
(A) (xy)/(x+y-1)	(B) (xy)/(x-y-1)	(C) (xy)/(x+y+1)	(D) None
105. If the sum of three numb	pers in G.P. is 35 and their	r product is 1000 the 1	numbers are
(A) 20, 10, 5	(B) 5, 10, 20	(C) both	(D) None
106. If the sum of three numl are	pers in G.P. is 21 and the	sum of their squares	is 189 the numbers
(A) 3, 6, 12	(B) 12, 6, 3	(C) both	(D) None
107. If <i>a, b, c</i> are in G.P. then	the value of $a(b^2+c^2)-c($	(a^2+b^2) is	
(A) 0	(B) 1	(C) –1	(D) None
108. If <i>a, b, c, d</i> are in G.P. th	en the value of b(ab-cd)-(c+a)(b ² -c ²) is	-

6.30

109. If <i>a. h. c. d</i> are in G.P	. then the value of (ab+b	$(a^{2}+b^{2}+c^{2})$	$b^{2}+c^{2}+d^{2}$) is
(A) 0	(B) 1	(C) -1	(D) None
110. If <i>a, b, c, d</i> are in G.F	P. then a+b, b+c, c+d are	in	
(A) A.P.	(B) G.P.	(C) H.P.	(D) None
111. If <i>a, b, c</i> are in G.P. t	hen a^2+b^2 , $ab+bc$, b^2+c^2	are in	
(A) A.P.	(B) G.P.	(C) H.P.	(D) None
112. If <i>a, b, x, y, z</i> are pos z=(2ab)/(a+b) then	sitive numbers such that a	<i>a, x, b</i> are in A.P. an	d a , y , b are in G.P. and
(A) $x y z$ are in G.P.	(B) $x \ge y \ge z$	(C) both	(D) None
113. If <i>a, b, c</i> are in G.P. th	nen the value of (a-b+c)(a-b+c)	a+b+c) ² -(a+b+c)(a ² -	$+b^2+c^2$) is given by
(A) 0	(B) 1	(C) -1	(D) None
114. If <i>a, b, c</i> are in G.P. th	then the value of $a(b^2+c^2)$	$-c(a^2+b^2)$ is given b	У
(A) 0	(B) 1	(C) 1	(D) None
115. If <i>a, b, c</i> are in G.P. th	then the value of $a^2b^2c^2$ (a	$a^{-3}+b^{-3}+c^{-3})-(a^{3}+b^{3}+c^{-3})$	z ³) is given by
(A) 0	(B) 1		(D) None
116. If <i>a, b, c, d</i> are in G.P.	then $(a-b)^2$, $(b-c)^2$, $(c-d)^2$	$)^2$ are in	
(A) A.P.	(B) G.P.	(C) H.P.	(D) None
117. If <i>a b c d</i> are in G.P. t	hen the value of $(b-c)^2 + (c-c)^2 + (c-c)^2$	$(a-a)^2 + (d-b)^2 - (a-d)^2$	is given by
(A) 0	(B) 1	(C) –1	(D) None
118. If (a-b), (b-c), (c-a)	are in G.P. then the value	of $(a+b+c)^2-3(ab+b)$	c+ca) is given by
(A) 0	(B) 1	(C) –1	(D) None
119. If $a^{1/x}=b^{1/y}=c^{1/z}$ and	<i>a, b, c</i> are in G.P. then <i>x, y</i>	z, z are in	
(A) A.P.	(B) G.P.	(C) H.P.	(D) None
	$a^{2} + \dots \alpha, y = b - b/r + b$	b/r^2 – α , and z	$= c + c/r^2 + c/r^4 + \dots$
α , then the value of	$\frac{xy}{z} - \frac{ab}{c}$ is		
(A) 0	(B) 1	(C) – 1	(D) None

MATHS

6.31

121. If <i>a, b, c</i> are in A.P. <i>a, x, b</i>	are in G.P. and <i>b, y, c</i> a	re in G.P then x^2 ,	b^2 , y^2 are in
(A) A.P.	(B) G.P.	(C) H.P.	(D) None
122. If a, b-a, c-a are in G.P.	and $a=b/3=c/5$ then a, l	o, c are in	
(A) A.P.	(B) G.P.	(C) H.P.	(D) None
123.If a, b, (c+1) are in G.P.	and $a = (b-c)^2$ then a, b, b	c are in	
(A) A.P.	(B) G.P.	(C) H.P.	(D) None
124. If $S_1, S_2, S_3, \dots, S_n$ are	the sums of infinite G.P.	s whose first terms	are 1, 2, 3n and
whose common ratios are	1/2, 1/3,1/(<i>n</i> +1) th	en the value of S_1 +	$S_2 + S_3 + \dots S_n$ is
(A) (n/2) (n+3)	(B) (n/2) (n+2)	(C) (n/2) (n+1)	(D) $n^2/2$
125. The G.P. whose 3^{rd} and 6^{td}	terms are 1, -1/8 respec	tively is	
(A) 4, -2, 1	(B) 4, 2, 1	(C) 4, -1, 1/4	(D) None
126. In a G.P. if the $(p+q)^{th}$ te	rm is <i>m</i> and the $(p-q)^{th}$	term is <i>n</i> then the <i>p</i>	th term is
(A) $(mn)^{1/2}$	(B) mn	(C) (m+n)	(D) (m-n)
127. The sum of n terms of the	series is $1/\sqrt{3}+1+3/\sqrt{3}$	+	
(A) $(1/6) (3+\sqrt{3}) (3^{n/2}-1),$	रेश्व घुल्तेषु जागार	(B) (1/6) (√3+1) (3 ^{n/2} -1),
(C) $(1/6) (3+\sqrt{3}) (3^{n/2}+1),$		(D) None	
128. The sum of <i>n</i> terms of the	series 5/2 – 1 + 2/5 –	is	
(A) $(1/14) (5^{n}+2^{n})/5^{n-2}$	(B) $(1/14) (5^n - 2^n)/5^{n-2}$	(C) both	(D) None
129. The sum of n terms of the	series 0.3 + 0.03 + 0.003 +	is	
(A) $(1/3)(1-1/10^n)$	(B) $(1/3)(1+1/10^n)$	(C) both	(D) None
130. The sum of first eight term ratio is	as of G.P. is five times the	sum of the first four	terms. The common
(A) $\sqrt{2}$	(B) <u>-√2</u>	(C) both	(D) None
131. If the sum of <i>n</i> terms of a value of <i>n</i> is	G.P. with first term 1 a	nd common ratio 1/	'2 is 1+127/128, the
(A) 8	(B) 5	(C) 3	(D) None

6.32

132. If the sum of <i>n</i> terms of a <i>n</i> is	G.P. with last term 128 a	nd common ratio 2 i	is 255, the value of
(A) 8	(B) 5	(C) 3	(D) None
133. How many terms of the G	.P. 1, 4, 16 are to be	taken to have their	sum 341?
(A) 8	(B) 5	(C) 3	(D) None
134. The sum of n terms of the	series 5 + 55 + 555 +	is	
(A) $(50/81) (10^{n} - 1) - (5/9)n$		(B) $(50/81) (10^{n}+1)$	-(5/9)n
(C) $(50/81) (10^{n}+1)+(5/9)r$	l	(D) None	
135. The sum of n terms of the	series 0.5 + 0.55 + 0.555	+ is	
(A) $(5/9)n-(5/81)(1-10^{-n})$		(B) (5/9)n+(5/81)(1	-10 ⁻ⁿ)
(C) $(5/9)n+(5/81)(1+10^{-n})$		(D) None	
136. The sum of <i>n</i> terms of the s	series 1.03+1.03 ² +1.03 ³	+)is	
(A) $(103/3)(1.03^{n}-1)$	(B) $(103/3)(1.03^{n}+1)$	(C) $(103/3)(1.03^{n+1})$	-1) (D) None
137. The sum upto infinity of th	the series $1/2 + 1/6 + 1/13$	8 + is	
(A) 3/4	(B) 1/4 (B) 1/4	(C) 1/2	(D) None
138. The sum upto infinity of th	the series $4 + 0.8 + 0.16 + .$	is	
(A) 5	(B) 10	(C) 8	(D) None
139. The sum upto infinity of th	the series $\sqrt{2}+1/\sqrt{2}+1/(2)$	$\sqrt{2}$)+ is	
(A) $2\sqrt{2}$	(B) 2	(C) 4	(D) None
140. The sum upto infinity of th	the series $2/3 + 5/9 + 2/2$	7 + 5/81 + is	
(A) 11/8	(B) 8/11	(C) 3/11	(D) None
141. The sum upto infinity of th	the series $(\sqrt{2}+1)+1+(\sqrt{2}-1)$	1)+ is	
(A) $(1/2)(4+3\sqrt{2})$	(B) (1/2)(4-3√2)	(C) <u>4+3√2</u>	(D) None
142. The sum upto infinity of the	ne series (1+2 ⁻²)+(2 ⁻¹ +2 ⁻⁴)+(2^{-2} + 2^{-6})+ is	
(A) 7/3	(B) 3/7	(C) 4/7	(D) None

MATHS

143. The sum up to infinity of the series $\frac{4}{7}-\frac{5}{7^2}+\frac{4}{7^3}-\frac{5}{7^4}+\dots$ is						
(A) 23/48	(B) 25/48	(C) 1/2	(D) None			
144. If the sum of infinite term	s in a G.P. is 2 and the	sum of their squares	is $4/3$ the series is			
(A) 1, 1/2, 1/4	(B) 1, -1/2, 1/4	. (C) -1, -1/2, -1/4	4 (D) None			
145. The infinite G.P. series wi	th first term 1/4 and su	ım 1/3 is				
(A) 1/4, 1/16, 1/64	(B) 1/4, -1/16, 1/64	(C) 1/4, 1/8, 1/1	.6 (D) None			
146. If the first term of a G.P. series is	exceeds the second term	n by 2 and the sum	to infinity is 50 the			
(A) 10, 8, 32/5	(B) 10, 8, 5/2	(C) 10, 10/3, 10/	9 (D) None			
147. Three numbers in G.P. w	ith their sum 130 and t	heir product 27000	are			
(A) 10, 30, 90	(B) 90, 30, 10	(C) both	(D) None			
148. Three numbers in G.P. wi	th their sum 13/3 and	sum of their square	s 91/9 are			
(A) 1/3, 1, 3	(B) 3, 1, 1/3	(C) both	(D) None			
149. Find five numbers in G.P. 108.	such that their product	is 32 and the produ	ict of the last two is			
(A) 2/9, 2/3, 2, 6, 18	(B) 18, 6, 2, 2/3, 2/9	(C) both	(D) None			
150. If the continued product of three numbers in G.P. is 27 and the sum of their products in pairs is 39 the numbers are						
(A) 1, 3, 9	(B) 9, 3, 1	(C) both	(D) None			
151. The numbers <i>x,</i> 8, <i>y</i> are in	G.P. and the numbers .	<i>x, y,</i> −8 are in A.P. T	he values of <i>x, y</i> are			
	(\mathbf{D}) (1)	$\langle C \rangle = 1$				

(A) 16, 4 (B) 4, 16 (C) both (D) None

6.34

AN	ISWERS									
1)	С	31)	А	61)	А	91)	А	121)	А	
2)	А	32)	А	62)	А	92)	А	122)	А	
3)	В	33)	А	63)	А	93)	А	123)	А	
4)	А	34)	В	64)	А	94)	С	124)	А	
5)	А	35)	В	65)	А	95)	С	125)	А	
6)	В	36)	А	66)	А	96)	В	126)	А	
7)	С	37)	В	67)	А	97)	В	127)	А	
8)	С	38)	С	68)	А	98)	В	128)	С	
9)	А	39)	D	69)	А	99)	А	129)	А	
10)	А	40)	D	70)	А	100)	С	130)	С	
11)	В	41)	А	71)	А	101)	В	131)	А	
12)	В	42)	А	72)	A	102)	А	132)	А	
13)	А	43)	D	(73)	A	103)	А	133)	В	
14)	С	44)	D	74)	A-	(104)	А	134)	А	
15)	В	45)	С	(75)	A	105)	С	135)	А	
16)	А	46)	А	76)	A	106)	С	136)	А	
17)	А	47)	В	E 77)	B	107)	Α	137)	А	
18)	А	48)	С	78)	A	108)	А	138)	А	
19)	А	49)	А	79)	Aren	109)	А	139)	А	
20)	С	50)	В	80)	A	110)	В	140)	А	
21)	В	51)	А	81)	А	111)	В	141)	А	
22)	А	52)	D	82)	А	112)	С	142)	А	
23)	А	53)	В	83)	А	113)	А	143)	А	
24)	А	54)	В	84)	А	114)	А	144)	А	

AN

25) C

26) A

27) C

28) C

29) A

30) C

151) A

55)

58)

59)

56) A

57) D

60) A

А

А

А

85)

86)

87)

88)

89)

90)

А

А

А

В

С

D

115) A

116) B

117) A

118) A

119) A

120) A

145)

146)

147)

148)

149)

150) C

А

А

С

С

А