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LEARNING OBJECTIVESLEARNING OBJECTIVESLEARNING OBJECTIVESLEARNING OBJECTIVESLEARNING OBJECTIVES

After reading this Chapter a student will be able to understand —

� difference between permutation and combination for the purpose of arranging different
objects;

� number of permutations and combinations when r objects are chosen out of n different
objects.

� meaning and computational techniques of circular permutation and permutation with
restrictions.

5.1 INTRODUCTION5.1 INTRODUCTION5.1 INTRODUCTION5.1 INTRODUCTION5.1 INTRODUCTION
In this chapter we will learn problem of arranging and grouping of certain things, taking
particular number of things at a time. It should be noted that (a, b) and (b, a) are two different
arrangements, but they represent the same group. In case of arrangements, the sequence or
order of things is also taken into account.

The manager of a large bank has a difficult task of filling two important positions from a group
of five equally qualified employees. Since none of them has had actual experience, he decides
to allow each of them to work for one month in each of the positions before he makes the
decision. How long can the bank operate before the positions are filled by permanent
appointments?

Solution to above - cited situation requires an efficient counting of the possible ways in which
the desired outcomes can be obtained. A listing of all possible outcomes may be desirable, but
is likely to be very tedious and subject to errors of duplication or omission. We need to devise
certain techniques which will help us to cope with such problems. The techniques of permutation
and combination will help in tackling problems such as above.

FUNDAMENTFUNDAMENTFUNDAMENTFUNDAMENTFUNDAMENTALALALALAL PRINCIPLES OF COUNTING PRINCIPLES OF COUNTING PRINCIPLES OF COUNTING PRINCIPLES OF COUNTING PRINCIPLES OF COUNTING

(a) Multiplication Rule: Multiplication Rule: Multiplication Rule: Multiplication Rule: Multiplication Rule: If certain thing may be done in ‘m’ different ways and when it has
been done, a second thing can be done in ‘n ‘ different ways then total number of ways of
doing both things simultaneously = m × n.

Eg. if one can go to school by 5 different buses and then come back by 4 different buses
then total number of ways of going to and coming back from school = 5 × 4 = 20.

(b) Addition Rule : Addition Rule : Addition Rule : Addition Rule : Addition Rule : It there are two alternative jobs which can be done in ‘m’ ways and in ‘n’
ways respectively then either of two jobs can be done in (m + n) ways.

Eg. if one wants to go school by bus where there are 5 buses or to by auto where there are
4 autos, then total number of ways of going school = 5 + 4 = 9.

Note :-Note :-Note :-Note :-Note :- 1)

AND AND AND AND AND ⇒⇒⇒⇒⇒ Multiply Multiply Multiply Multiply Multiply
OR OR OR OR OR ⇒⇒⇒⇒⇒ Add Add Add Add Add

2) The above fundamental principles may be generalised, wherever necessary.
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5.25.25.25.25.2 THE FTHE FTHE FTHE FTHE FACTORIALACTORIALACTORIALACTORIALACTORIAL

Definition Definition Definition Definition Definition : The factorial n, written as n! or n , represents the product of all integers from 1 to

n both inclusive. To make the notation meaningful, when n = o, we define o! or o  = 1.

Thus, n! = n (n – 1) (n – 2) ….. …3.2.1
Example 1 Example 1 Example 1 Example 1 Example 1 : Find 5! ; 4! and 6!
SolutionSolutionSolutionSolutionSolution : 5! = 5 × 4 × 3 × 2 × 1 = 120; 4! = 4 × 3 × 2 × 1 = 24; 6! = 6 × 5 × 4 × 3 × 2 × 1 = 720.
Example 2Example 2Example 2Example 2Example 2 : Find 9 ! / 6 ! ; 10 ! / 7 !.

SolutionSolutionSolutionSolutionSolution :
× × × × × ×

× ×
9 ! 9  8  7  6 ! 10 ! 10  9  8  7 !

 =  = 9  8  7 = 504 ;  = 
6 ! 6 ! 7 ! 7 !

 = 10 × 9 × 8 =720

Example 3Example 3Example 3Example 3Example 3 : Find x if 1/9 ! + 1/10 ! = x/11 !
SolutionSolutionSolutionSolutionSolution : 1/9! (1 + 1/10) = x/11 × 10 × 9! Or, 11/10 = x/11 × 10 i.e., x = 121

Example 4Example 4Example 4Example 4Example 4 : Find n if −n +1=30 n 1

Solution:Solution:Solution:Solution:Solution: 30n + 1=30 n 1      (n + 1).n n 1 n 1− ⇒ − = −

or, n2 + n = 30 or, n2 + n – 30 or, n2 + 6n – 5n – 30 = 0      or,   (n + 6) (n – 5) = 0

either n = 5 or n = –6. (Not possible) ∴ n = 5.

5.3 PERMUT5.3 PERMUT5.3 PERMUT5.3 PERMUT5.3 PERMUTATIONSATIONSATIONSATIONSATIONS
A group of persons want themselves to be photographed. They approach the photographer
and request him to take as many different photographs as possible with persons standing in
different positions amongst themselves. The photographer wants to calculate how many films
does he need to exhaust all possibilities? How can he calculate the number?

In the situations such as above, we can use permutations to find out the exact number of films.

DefinitionDefinitionDefinitionDefinitionDefinition : The ways of arranging or selecting smaller or equal number of persons or objects
from a group of persons or collection of objects with due regard being paid to the order of
arrangement or selection, are called permutations.

Let us explain, how the idea of permutation will help the photographer. Suppose the group
consists of Mr. Suresh, Mr. Ramesh and Mr. Mahesh. Then how many films does the
photographer need? He has to arrange three persons amongst three places with due regard to
order. Then the various possibilities are (Suresh, Mahesh, Ramesh), (Suresh, Ramesh, Mahesh),
(Ramesh, Suresh, Mahesh), (Ramesh, Mahesh, Suresh), (Mahesh, Ramesh, Suresh) and (Mahesh,
Suresh, Ramesh ). Thus there are six possibilities. Therefore he needs six films. Each one of
these possibilities is called permutation of three persons taken at a time.
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This may also be exhibited as follows :

AlternativeAlternativeAlternativeAlternativeAlternative Place 1Place 1Place 1Place 1Place 1 Place2Place2Place2Place2Place2 Place 3Place 3Place 3Place 3Place 3

 1 Suresh………. Mahesh……….. Ramesh

2 Suresh………. Ramesh……….. Mahesh

3 Ramesh……… Suresh………… Mahesh

4 Ramesh……… Mahesh……….. Suresh

5 Mahesh……… Ramesh……….. Suresh

6 Mahesh……… Suresh…………. Ramesh

with this example as a base, we can introduce a general formula to find the number of
permutations.

Number of Permutations when r objects are chosen out of n different objects. ( DenotedNumber of Permutations when r objects are chosen out of n different objects. ( DenotedNumber of Permutations when r objects are chosen out of n different objects. ( DenotedNumber of Permutations when r objects are chosen out of n different objects. ( DenotedNumber of Permutations when r objects are chosen out of n different objects. ( Denoted
by by by by by nPr or nPr or P(n, r) ) :

Let us consider the problem of finding the number of ways in which the first r rankings are
secured by n students in a class. As any one of the n students can secure the first rank, the
number of ways in which the first rank is secured is n.

Now consider the second rank. There are (n – 1) students left, the second rank can be secured
by any one of them. Thus the different possibilities are (n – 1) ways. Now, applying fundamental
principle, we can see that the first two ranks can be secured in n (n – 1) ways by these n
students.

After calculating for two ranks, we find that the third rank can be secured by any one of the
remaining (n – 2) students. Thus, by applying the generalized fundamental principle, the first
three ranks can be secured in n (n – 1) (n – 2) ways .

Continuing in this way we can visualise that the number of ways are reduced by one as the
rank is increased by one. Therefore, again, by applying the generalised fundamental principle
for r different rankings, we calculate the number of ways in which the first r ranks are secured
by n students as

 nPr= n {(n – 1)… (n– r  – 1) }

= n (n – 1) … (n – r + 1)

Theorem :Theorem :Theorem :Theorem :Theorem : The number of permutations of n things chosen r at a time is given by

nPr =n  ( n – 1 ) ( n – 2 ) … ( n – r + 1 )

where the product has exactly r factors.
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5.4 RESUL5.4 RESUL5.4 RESUL5.4 RESUL5.4 RESULTSTSTSTSTS
1 Number of permutations of n different things taken all n things at a time is given by

nPn = n (n – 1) (n – 2) …. (n – n + 1)
=n (n – 1) (n – 2) ….. 2.1 = n!

2. nPr using factorial notation.
nPr = n. (n – 1) (n – 2) ….. (n – r + 1)

= n (n – 1) (n – 2) ….. (n – r + 1) × 
− − −

− − −
(n r) (n r 1) 2.1

1.2 ...(n r 1) (n r)

= n!/( n – r )!

Thus

−
n!nP  = r ( n  r )!

3. Justification for 0! = 1. Now applying r = n in the formula for nPr, we get
nPn = n!/ (n – n)! = n!/0!

But from Result 1 we find that nPn = n!. Therefore, by applying this

we derive, 0! = n! / n! = 1

Example 1 :Example 1 :Example 1 :Example 1 :Example 1 : Evaluate each of 5P3, 
10P2, 

11P5.

Solution :Solution :Solution :Solution :Solution : 5P3 = 5×4× (5–3+1) = 5 × 4 × 3 = 60,
10P2 = 10 × …. × (10–2+1) = 10 × 9 = 90,
11P5 = 11! / (11 – 5)! = 11 × 10 × 9 × 8 × 7 × 6! / 6! = 11 × 10 × 9 × 8 × 7 = 55440.

Example 2 :Example 2 :Example 2 :Example 2 :Example 2 : How many three letters words can be formed using the letters of the words
(a) square and (b) hexagon?

(Any arrangement of letters is called a word even though it may or may not have any meaning or pronunciation).

Solution :Solution :Solution :Solution :Solution :

(a) Since the word ‘square’ consists of 6 different letters, the number of permutations of
choosing 3 letters out of six equals 6P3 = 6 × 5 × 4 = 120.

(b) Since the word ‘hexagon’ contains 7 different letters, the number of  permutations is
7P3 = 7 × 6 × 5 = 210.

Example 3 :Example 3 :Example 3 :Example 3 :Example 3 : In how many different ways can five persons stand in a line for a group
photograph?

Solution :Solution :Solution :Solution :Solution : Here we know that the order is important. Hence, this is the number of permutations
of five things taken all at a time. Therefore, this equals

5P5 = 5! = 5 × 4 × 3 × 2 × 1 = 120 ways.
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Example 4 :Example 4 :Example 4 :Example 4 :Example 4 : First, second and third prizes are to be awarded at an engineering fair in which 13
exhibits have been entered. In how many different ways can the prizes be awarded?

Solution :Solution :Solution :Solution :Solution : Here again, order of selection is important and repetitions are not meaningful as no
one can receive more than one prize. Hence , the answer is the number of permutations of 13
things chosen three at a time. Therefore, we find 13P3 = 13!/10! = 13×12×11 = 1,716 ways.

Example 5 :Example 5 :Example 5 :Example 5 :Example 5 : In how many different ways can 3 students be associated with 4 chartered
accountants, assuming that each chartered accountant can take at most one student?

Solution :Solution :Solution :Solution :Solution : This equals the number of permutations of choosing 3 persons out of 4. Hence , the
answer is 4P3 = 4×3×2 = 24.

Example 6 :Example 6 :Example 6 :Example 6 :Example 6 : If six times the number permutations of n things taken 3 at a time is equal to seven
times the number of permutations of (n – 1) things chosen 3 at a time, find n.

Solution :Solution :Solution :Solution :Solution : We are given that 6 × nP3 = 7 × n-1P3 and we have to solve this equality to find the
value of n. Therefore,

or, 6 n (n – 1) (n – 2) = 7 (n – 1) (n – 2) (n – 3)
or, 6 n = 7 (n – 3)
or, 6 n = 7n – 21
or, n = 21

Therefore, the value of n equals 21.

Example 7 :Example 7 :Example 7 :Example 7 :Example 7 : Compute the sum of 4 digit numbers which can be formed with the four digits 1,
3, 5, 7, if each digit is used only once in each arrangement.

Solution :Solution :Solution :Solution :Solution : The number of arrangements of 4 different digits taken 4 at a time is given by
4P4 = 4! = 24. All the four digits will occur equal number of times at each of the position, namely
ones, tens, hundreds, thousands.
Thus, each digit will occur 24 / 4 = 6 times in each of the position. The sum of digits in one’s
position will be 6 × (1 + 3 + 5 + 7) = 96. Similar is the case in ten’s, hundred’s and thousand’s
places. Therefore, the sum will be 96 + 96 × 10 + 96 × 100 + 96 × 1000 = 106656.

Example 8 :Example 8 :Example 8 :Example 8 :Example 8 : Find n if nP3 = 60.

Solution : Solution : Solution : Solution : Solution : 
−
n!n P  = =60  (given)3 (n  3)!

i.e., n (n–1) (n–2) = 60 = 5 × 4 × 3
Therefore, n = 5.
Example 9 :Example 9 :Example 9 :Example 9 :Example 9 : If 56P r+6 : 

54P r+3 = 30800 : 1, find r.

Solution : Solution : Solution : Solution : Solution : We know npr = −
n!

(n  r)! ;

∴56P r+6 = 
− −

56! 56 !

{56  (r + 6)}! (50
=

r)!

n n 1
6 7

n-3 n-4
−=
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Similarly, 54Pr+3   = − −
54! 54 !

{54  (r + 3)}! (51
=

r)!

Thus,  
−

−

56
r+6

54
r+3

p 56! (51 r)!
= x

p (50 r!) 54!

× × − − × × −
×

−
=56 55 54! (51 r) (50 r)! 56 55 (51 r)

(50 r)! 54! 1
But we are given the ratio as 30800 : : : : : 1 ; therefore

× × − =56 55 (51 r) 30800

1 1

30800
or, (51 r) = =10 r = 41

56 55
− ∴

×

Example 10 :Example 10 :Example 10 :Example 10 :Example 10 : Prove the following

(n + 1)! – n! = ⇒ n.n!

Solution :Solution :Solution :Solution :Solution : By applying the simple properties of factorial, we have

(n +1)! – n! = (n+1) n! – n! = n!. (n+1–1) = n. n!

Example 1Example 1Example 1Example 1Example 11 : 1 : 1 : 1 : 1 : In how many different ways can a club with 10 members select a President,
Secretary and Treasurer, if no member can hold two offices and each member is eligible for any
office?

Solution : Solution : Solution : Solution : Solution : The answer is the number of permutations     of 10 persons chosen three at a time.
Therefore, it is 10p3 = 10×9×8=720.

Example 12 : Example 12 : Example 12 : Example 12 : Example 12 : When Jhon arrives in New York, he has eight shops to see, but he has time only to
visit six of them. In how many different ways can he arrange his schedule in New York?

Solution :Solution :Solution :Solution :Solution : He can arrange his schedule in 8P6 = 8× 7 × 6 × 5 × 4 × 3 = 20160 ways.

Example 13 : Example 13 : Example 13 : Example 13 : Example 13 : When Dr. Ram arrives in his dispensary, he finds 12 patients waiting to see him.
If he can see only one patients at a time, find the number of ways, he can schedule his patients
(a) if they all want their turn, and (b) if 3 leave in disgust before Dr. Ram gets around to seeing
them.

Solution : (a) Solution : (a) Solution : (a) Solution : (a) Solution : (a) There are 12 patients and all 12 wait to see the doctor. Therefore the number of
ways =     12P12 = 12! = 479,001,600

(b) There are 12–3 = 9 patients. They can be seen 12P9 = 79,833,600 ways.

Exercise 5 (A)Exercise 5 (A)Exercise 5 (A)Exercise 5 (A)Exercise 5 (A)

Choose the most appropriate option (a) (b) (c) or (d)Choose the most appropriate option (a) (b) (c) or (d)Choose the most appropriate option (a) (b) (c) or (d)Choose the most appropriate option (a) (b) (c) or (d)Choose the most appropriate option (a) (b) (c) or (d)

1. 4P 3 is evaluated as
a) 43 b) 34 c) 24 d) None of these
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2. 4P4 is equal to
a) 1 b) 24 c) 0 d) none of these

3. 7  is equal to
a) 5040 b) 4050 c) 5050 d) none of these

4. 0  is a symbol equal to
a) 0 b) 1 c) Infinity d) none of these

5. In nPr, n is always
a) an integer b) a fraction c) a positive integer d) none of these

6. In nPr , the restriction is
a) n > r b) n ≥ r c) n ≤ r d) none of these

7. In nPr = n (n–1) (n–2) ………………(n–r–1), the number of factor is
a) n b) r–1 c) n–r d) r

8. nPr can also written as

a) −
n

n r b) −
n

r n r c) −
r

n r d) none of these

9 If nP4 = 12 × nP2, the n is equal to
a) –1 b) 6 c) 5 d) none of these

10. If . nP3 : : : : : 
nP2 = 3 : 1, then n is equal to

a) 7 b) 4 c) 5 d) none of these

11. m+nP2 = 56, m–nP2 = 30 then
a) m =6, n = 2 b) m = 7, n= 1 c) m=4,n=4 d) None of these

12. if  5Pr = 60, then the value of r is
a) 3 b) 2 c) 4 d) none of these

13. If n +n1 2 P2 = 132, n1–n2P2 = 30 then,
a) n1=6,n2=6 b) n1 = 10, n2 = 2 c) n1 = 9, n2 = 3 d) none of these

14. The number of ways the letters of the word COMPUTER can be rearranged is
a) 40320 b) 40319 c) 40318 d) none of these

15. The number of arrangements of the letters in the word FAILURE, so that vowels are always
coming together is
a) 576 b) 575 c) 570 d) none of these

16. 10 examination papers are arranged in such a way that the best and worst papers never
come together. The number of arrangements is
a) 9 8 b) 10 c) 8 9 d) none of these

17. n articles are arranged in such a way that 2 particular articles never come together. The
number of such arrangements is
a) (n–2) −n 1 b) (n–1) −n 2 c) n d) none of these
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18. If 12 school teams are participating in a quiz contest, then the number of ways the first,
second and third positions may be won is
a) 1230 b) 1320 c) 3210 d) none of these

19. The sum of all 4 digit number containing the digits 2, 4, 6, 8, without repetitions is

a) 133330 b) 122220 c) 213330 d) 133320

20 The number of 4 digit numbers greater than 5000 can be formed out of the  digits 3,4,5,6
and 7(no. digit is repeated). The number of such is
a) 72 b) 27 c) 70 d) none of these

21. 4 digit numbers to be formed out of the figures 0, 1, 2, 3, 4 (no digit is repeated) then
number of such numbers is
(a) 120 (b) 20 (c) 96. (d) none of these

22. The number of ways the letters of the word “Triangle” to be arranged so that the word
’angle’ will be always present is
(a) 20 (b) 60 (c) 24 (d) 32

23. If the letters word ‘Daughter’ are to be arranged so that vowels occupy the odd places,
then number of different words are
(a) 576 (b) 676 (c) 625 (d) 524

5.5 CIRCULAR PERMUT5.5 CIRCULAR PERMUT5.5 CIRCULAR PERMUT5.5 CIRCULAR PERMUT5.5 CIRCULAR PERMUTAAAAATIONSTIONSTIONSTIONSTIONS
So for we have discussed arrangements of objects or things in a row which may be
termed as linear permutation. But if we arrange the objects along a closed curve viz., a circle,
the permutations are known as circular permutations.

The number of circular permutations of n different things chosen at a time is (n–1)!.

Proof : Proof : Proof : Proof : Proof : Let any one of the permutations of n different things taken. Then consider the
rearrangement of this permutation by putting the last thing as the first thing. Eventhough this

b

d

a

c

d

b

d b

c

a

c a a d a c

abcd dabc cdab bcda

is a different permutation in the ordinary sense, it will not be different in all n things are
arranged in a circle. Similarly, we can consider shifting the last two things to the front and so
on. Specially, it can be better understood, if we consider a,b,c,d. If we place a,b,c,d in order,
then we also get abcd, dabc, cdab, bcda as four ordinary permutations. These four words in
circular case are one and same thing. See above circles.
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Thus we find in above illustration that four ordinary permutations equals  one in circular.

Therefore, n ordinary permutations equal one circular permutation.

Hence there are nPn/ n ways in which all the n things can be arranged in a circle. This equals
(n–1)!.

Example 1 : Example 1 : Example 1 : Example 1 : Example 1 : In how many ways can 4 persons sit at a round table for a group discussions?

Solution : Solution : Solution : Solution : Solution : The answer can be get from the formula for circular permutations. The answer is
(4–1)! = 3! = 6 ways.

NOTE :NOTE :NOTE :NOTE :NOTE :  These arrangements are such that every person has got the same two neighbours. The
only change is that right side neighbour and vice-versa.

Thus the number of ways of arranging n persons along a round table so that no person hasThus the number of ways of arranging n persons along a round table so that no person hasThus the number of ways of arranging n persons along a round table so that no person hasThus the number of ways of arranging n persons along a round table so that no person hasThus the number of ways of arranging n persons along a round table so that no person has

the same two neighbours is the same two neighbours is the same two neighbours is the same two neighbours is the same two neighbours is −1 n 1=
2

Similarly, in forming a necklace or a garland there is no distinction between a clockwise and
anti clockwise direction because we can simply turn it over so that clockwise becomes anti
clockwise and vice versa. Hence, the number of necklaces formed with n beadsHence, the number of necklaces formed with n beadsHence, the number of necklaces formed with n beadsHence, the number of necklaces formed with n beadsHence, the number of necklaces formed with n beads of differentof differentof differentof differentof different

n -11
2

colours=

5.6 PERMUT5.6 PERMUT5.6 PERMUT5.6 PERMUT5.6 PERMUTAAAAATION WITH RESTRICTIONSTION WITH RESTRICTIONSTION WITH RESTRICTIONSTION WITH RESTRICTIONSTION WITH RESTRICTIONS
In many arrangements there may be number of restrictions. in such cases, we are to arrange or
select the objects or persons as per the restrictions imposed. The total number of arrangements
in all cases, can be found out by the application of fundamental principle.

Theorem 1. Number of permutations of n distinct objects when a particular object is notTheorem 1. Number of permutations of n distinct objects when a particular object is notTheorem 1. Number of permutations of n distinct objects when a particular object is notTheorem 1. Number of permutations of n distinct objects when a particular object is notTheorem 1. Number of permutations of n distinct objects when a particular object is not
taken in any arrangement is taken in any arrangement is taken in any arrangement is taken in any arrangement is taken in any arrangement is n–1pr.....

Proof :Proof :Proof :Proof :Proof : Since a particular object is always to be excluded, we have to place n – 1 objects at r
places. Clearly this can be done in n–1pr ways.

Theorem 2.Theorem 2.Theorem 2.Theorem 2.Theorem 2. Number of permutations of n distinct objects when a particular object is always
included in any arrangement is r. n–1pr–1.

Proof :Proof :Proof :Proof :Proof : If the particular object is placed at first place, remaining r – 1 places can be filled from n
– 1 distinct objects in n–1pr–1 ways. Similarly, by placing the particular object in 2nd, 3rd, ….., rth
place, we find that in each case the number of permutations is n–1pr–1.This the total number of
arrangements in which a particular object always occurs is r. n–1pr–1

The following examples will enlighten further:

Example 1 : Example 1 : Example 1 : Example 1 : Example 1 : How many arrangements can be made out of the letters of the word DRAUGHT,
the vowels never beings separated?

Solution :Solution :Solution :Solution :Solution : The word DRAUGHT consists of 7 letters of which 5 are consonants and two are
vowels. In the arrangement we are to take all the 7 letters but the restriction is that the two
vowels should not be separated.
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We can view the two vowels as one letter. The two vowels A and U in this one letter can be
arranged in 2! = 2 ways. (i) AU or (ii) UA. Further, we can arrange the six letters : 5 consonants
and one letter compound letter consisting of two vowels. The total number of ways of arranging
them is 6P6  = 6! = 720 ways.

Hence, by the fundamental principle, the total number of arrangements of the letters of the
word DRAUGHT, the vowels never being separated = 2 × 720 = 1440 ways.

Example 2 : Example 2 : Example 2 : Example 2 : Example 2 : Show that the number of ways in which n books can be arranged on a shelf so that
two particular books are not together.The number is (n–2).(n–1)!

Solution:Solution:Solution:Solution:Solution: We first find the total number of arrangements in which all n books can be arranged
on the shelf without any restriction. The number is,nPn = n! ….. (1)

Then we find the total number of arrangements in which the two particular books are together.

The books can be together in 2P2 = 2! = 2 ways. Now we consider those two books which are
kept together as one composite book and with the rest of the (n–2) books from (n–1) books
which are to be arranged on the shelf; the number of arrangements = n–1Pn–1 = (n–1) !. Hence by
the Fundamental Principle, the total number of arrangements on which the two particular
books are together equals = 2 × (n–1)! …….(2)

the required number of arrangements of n books on a shelf so that two particular books are not
together

= (1) – (2)
= n! – 2 x (n–1)!
= n.(n – 1)! – 2 . (n–1)!
= (n–1)! . (n–2)

Example 3 :Example 3 :Example 3 :Example 3 :Example 3 : There are 6 books on Economics, 3 on Mathematics and 2 on Accountancy. In how
many ways can these be placed on a shelf if the books on the same subject are to be together?

Solution :Solution :Solution :Solution :Solution : Consider one such arrangement. 6 Economics books can be arranged among
themselves in 6! Ways, 3 Mathematics books can be arranged in 3! Ways and the 2 books on
Accountancy can be arranged in 2! ways. Consider the books on each subject as one unit. Now
there are three units. These 3 units can be arranged in 3! Ways.

Total number of arrangements =  3! × 6! × 3! × 2!

=  51,840.

Example 4 :Example 4 :Example 4 :Example 4 :Example 4 : How many different numbers can be formed by using any three out of five digits
1, 2, 3, 4, 5, no digit being repeated in any number?

How many of these will (i) begin with a specified digit? (ii) begin with a specified digit and end
with another specified digit?

Solution :Solution :Solution :Solution :Solution : Here we have 5 different digits and we have to find out the number of permutations
of them 3 at a time. Required number is 5P3 = 5.4.3 = 60.

(i) If the numbers begin with a specified digit, then we have to find
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The number of Permutations of the remaining 4 digits taken 2 at a time. Thus, desire
number is 4P2 = 4.3 = 12.

(ii) Here two digits are fixed; first and last; hence, we are left with the choice of finding the
number of permutations of 3 things taken one at a time i.e., 3P1 =3.

Example 5 :Example 5 :Example 5 :Example 5 :Example 5 : How many four digit numbers can be formed out of the digits 1,2,3,5,7,8,9, if no
digit is repeated in any number? How many of these will be greater than 3000?

Solution :Solution :Solution :Solution :Solution : We are given 7 different digits and a four-digit number is to be formed using any 4
of these digits. This is same as the permutations of 7 different things taken 4 at a time.

Hence, the number of four-digit numbers that can be formed = 7P4 = 7 × 6 × 5 × 4 × = 840 ways.

Next, there is the restriction that the four-digit numbers so formed must be greater than 3,000.
thus, it will be so if the first digit-that in the thousand’s position, is one of the five digits 3, 5, 7,
8, 9. Hence, the first digit can be chosen in 5 different ways; when this is done, the rest of the
3 digits are to be chosen from the rest of the 6 digits without any restriction and this can be
done in 6P3 ways.

Hence, by the Fundamental principle, we have the number of four-digit numbers greater than
3,000 that can be formed by taking 4 digits from the given 7 digits = 5 × 6P3 = 5 × 6 × 5 × 4 = 5
× 120 = 600.

Example 6 :Example 6 :Example 6 :Example 6 :Example 6 : Find the total number of numbers greater than 2000 that can be formed with the
digits 1, 2, 3, 4, 5 no digit being repeated in any number.

Solution :Solution :Solution :Solution :Solution : All the 5 digit numbers that can be formed with the given 5 digits are greater than
2000. This can be done in

5P5 = 5! = 120 ways …...................................(1)

The four digited numbers that can be formed with any four of the given 5 digits are greater
than 2000 if the first digit, i.e.,the digit in the thousand’s position is one of the four digits 2, 3, 4,
5. this can be done in 4P1 = 4 ways. When this is done, the rest of the 3 digits are to be chosen
from the rest of  5–1 = 4 digits. This can be done in 4P3 = 4 × 3 × 2 = 24 ways.

Therefore, by the Fundamental principle, the number of four-digit numbers greater than 2000
= 4 × 24 = 96 …. (2)

Adding (1) and (2), we find the total number greater than 2000 to be 120 + 96 = 216.

Example 7 :Example 7 :Example 7 :Example 7 :Example 7 : There are 6 students of whom 2 are Indians, 2 Americans, and the remaining 2 are
Russians. They have to stand in a row for a photograph so that the two Indians are together, the
two Americans are together and so also the two Russians. Find the number of ways in which
they can do so.

Solution :Solution :Solution :Solution :Solution : The two Indians can stand together in 2P2 = 2! = 2 ways. So is the case with the two
Americans and the two Russians.

Now these 3 groups of 2 each can stand in a row in 3P3 = 3 x 2 = 6 ways. Hence by the generalized
fundamental principle, the total number of ways in which they can stand for a photograph
under given conditions is

6 × 2 × 2 × 2 = 48
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Example 8 :Example 8 :Example 8 :Example 8 :Example 8 : A family of 4 brothers and three sisters is to be arranged for a photograph in one
row. In how many ways can they be seated if (i) all the sisters sit together, (ii) no two sisters sit
together?

Solution :Solution :Solution :Solution :Solution :
(i) Consider the sisters as one unit and each brother as one unit. 4 brother and 3 sisters make

5 units which can be arranged in 5! ways. Again 3 sisters may be arranged amongst
themselves in 3! Ways
Therefore, total number of ways in which all the sisters sit together = 5!×3! = 720 ways.

(ii) In this case, each sister must sit on each side of the brothers. There are 5 such positions as
indicated below by upward arrows :

B1           B2           B3           B4

4 brothers may be arranged among themselves in 4! ways. For each of these arrangements 3
sisters can sit in the 5 places in 5P3 ways.

Thus the total number of ways = 5P3 × 4! = 60 × 24 = 1,440

Example 9 :Example 9 :Example 9 :Example 9 :Example 9 : In how many ways can 8 persons be seated at a round table? In how many cases
will 2 particular persons sit together?

Solution : Solution : Solution : Solution : Solution : This is in form of circular permutation. Hence the number of ways in which eight
persons can be seated at a round table is ( n – 1 )! = ( 8 – 1 )! = 7! = 5040 ways.

Consider the two particular persons as one person. Then the group of 8 persons becomes a
group of 7 (with the restriction that the two particular persons be together) and seven persons
can be arranged in a circular in 6! Ways.

Hence, by the fundamental principle, we have, the total number of cases in which 2 particular
persons sit together in a circular arrangement of 8 persons = 2! × 6! = 2 × 6 × 5 × 4 × 3 ×2×1
= 1,440.

Example 10 : Example 10 : Example 10 : Example 10 : Example 10 : Six boys and five girls are to be seated for a photograph in a row such that no two
girls sit together and no two boys sit together. Find the number of ways in which this can be
done.

Solution :Solution :Solution :Solution :Solution : Suppose that we have 11 chairs in a row and we want the 6 boys and 5 girls to be
seated such that no two girls and no two boys are together. If we number the chairs from left to
right, the arrangement will be possible if and only if boys occupy the odd places and girls
occupy the even places in the row. The six odd places from 1 to 11 may filled in by 6 boys in 6P6
ways. Similarly, the five even places from 2 to 10 may be filled in by 5 girls in 5P5 ways.

Hence, by the fundamental principle, the total number of required arrangements = 6P6 × 5P5 =
6! × 5! = 720 × 120 = 86400.
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Exercise 5 (B)Exercise 5 (B)Exercise 5 (B)Exercise 5 (B)Exercise 5 (B)

Choose the most appropriate option (a) (b) (c) or (d)Choose the most appropriate option (a) (b) (c) or (d)Choose the most appropriate option (a) (b) (c) or (d)Choose the most appropriate option (a) (b) (c) or (d)Choose the most appropriate option (a) (b) (c) or (d)

1 The number of ways in which 7 girls form a ring is
(a) 700 (b) 710 (c) 720 (d) none of these

2. The number of ways in which 7 boys sit in a round table so that two particular boys may
sit together is
(a) 240 (b) 200 (c) 120 (d) none of these

3. If 50 different jewels can be set to form a necklace then the number of ways is

(a)  
2

1
 50 (b)   

2

1
 49 (c) 49 (d) none of these

4. 3 ladies and 3 gents can be seated at a round table so that any two and only two of the
ladies sit together. The number of ways is
(a) 70 (b) 27 (c) 72 (d) none of these

5. The number of ways in which the letters of the word DOGMATIC can be arranged is
(a) 40319 (b) 40320 (c) 40321 (d) none of these

6. The number of arrangements of 10 different things taken 4 at a time in which one particular
thing always occurs is
(a) 2015 (b) 2016 (c) 2014 (d) none of these

7. The number of permutations of 10 different things taken 4 at a time in which one particular
thing never occurs is
(a) 3020 (b) 3025 (c) 3024 (d) none of these

8. Mr. X and Mr. Y enter into a railway compartment having six vacant seats. The number of
ways in which they can occupy the seats is
(a) 25 (b) 31 (c) 32 (d) 30

9. The number of numbers lying between 100 and 1000 can be formed with the digits 1, 2, 3,
4, 5, 6, 7 is
(a) 210 (b) 200 (c) 110 (d) none of these

10. The number of numbers lying between 10 and 1000 can be formed with the digits 2,3,4,0,8,9
is
(a) 124 (b) 120 (c) 125 (d) none of these

11. In a group of boys the number of arrangement of 4 boys is 12 times the number of
arrangements of 2 boys. The number of boys in the group is
(a) 10 (b) 8 (c) 6 (d) none of these

12. The value of ∑
10

r=1

rr. P isr

(a) 11P11 (b) 11P11 –1 (c) 11P11 +1 (d) none of these
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13. The total number of 9 digit numbers of different digits is
(a) 10 9 (b) 8 9 (c) 9 9 (d) none of these

14. The number of ways in which 6 men can be arranged in a row so that the particular 3
men sit together, is
(a) 4P4 (b) 4P4 × 3P3 (c) ( 3 )2 (d) none of these

15. There are 5 speakers A, B, C, D and E. The number of ways in which A will speak always
before B is
(a) 24 (b) 4  × 2 (c) 5 (d) none of these

16. There are 10 trains plying between Calcutta and Delhi. The number of ways in which a
person can go from Calcutta to Delhi and return by a different train is
(a) 99 (b) 90 (c) 80 (d) none of these

17. The number of ways in which 8 sweats of different sizes can be distributed among 8
persons of different ages so that the largest sweat always goes to be younger assuming
that each one of then gets a sweat is
(a) 8 (b) 5040 (c) 5039 (d) none of these

18. The number of arrangements in which the letters of the word MONDAY be arranged so
that the words thus formed begin with M and do not end with N is
(a) 720 (b) 120 (c) 96 (d) none of these

19. The total number of ways in which six ‘t’ and four ‘–‘ signs can be arranged in a line such
that no two ‘–’ signs occur together is
(a) 7 / 3 (b) 6  × 7  / 3 (c) 35 (d) none of these

20. The number of ways in which the letters of the word MOBILE be arranged so that consonants
always occupy the odd places is
(a) 36 (b) 63 (c) 30 (d) none of these.

21. 5 persons are sitting in a round table in such way that Tallest Person is always on the right–
side of the shortest person; the number of such arrangements is
(a) 6 (b) 8 (c) 24 (d) none of these

5.7 COMBINA5.7 COMBINA5.7 COMBINA5.7 COMBINA5.7 COMBINATIONSTIONSTIONSTIONSTIONS
We have studied about permutations in the earlier section. There we have said that while
arranging or selecting, we should pay due regard to order. There are situations in which order
is not important. For example, consider selection of 5 clerks from 20 applicants. We will not be
concerned about the order in which they are selected. In this situation, how to find the number
of ways of selection? The idea of combination applies here.

Definition :Definition :Definition :Definition :Definition : The number of ways in which smaller or equal number of things are arranged or
selected from a collection of things where the order of selection or arrangement is not important,
are called combinations.
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The selection of a Poker hand which is a combination of five cards selected from 52 cards is an
example of combination of 5 things out of 52 things.

Number of combinations of n different things taken r at a time. (denoted byNumber of combinations of n different things taken r at a time. (denoted byNumber of combinations of n different things taken r at a time. (denoted byNumber of combinations of n different things taken r at a time. (denoted byNumber of combinations of n different things taken r at a time. (denoted by
nnnnnCCCCCrrrrr  C(n,r)  C (n/r ), C  C(n,r)  C (n/r ), C  C(n,r)  C (n/r ), C  C(n,r)  C (n/r ), C  C(n,r)  C (n/r ), Cn,rn,rn,rn,rn,r)))))

Let nCr denote the required number of combinations. Consider any one of those combinations.
It will contain r things. Here we are not paying attention to order of selection. Had we paid
attention to this, we will have permutations or r items taken r at a time. In other words, every
combination of r things will have rPr permutations amongst them. Therefore, nCr combinations
will give rise to nCr. 

rPr permutations of r things selected form n things. From the earlier section,
we can say that nCr. 

rPr = nPr as nPr denotes the number of permutations of r things chosen out of
n things.

Since, nCr.
rPr = nPr  

,

nCr = nPr/
rPr = n!/ (n – r ) ! ÷ r!/(r – r )!

= n!/(n – r )! × 0!/r!

= n! / r! ( n – r )!

∴ nCr = n!/r! ( n – r )!

Remarks:Remarks:Remarks:Remarks:Remarks: Using the above formula, we get
(i) nCo = n! / 0! ( n – 0 )! = n!/n! =1. [ As 0! = 1]

nCn = n! / n! ( n – n ) ! = n! / n! 0! = 1 [ Applying the formula for nCr  with r = n ]
Example 1 :Example 1 :Example 1 :Example 1 :Example 1 : Find the number of different poker hands in a pack of 52 playing cards.
Solution :Solution :Solution :Solution :Solution : This is the number of combinations of 52 cards taken five at a time. Now applying
the formula,

52C5 = 52!/5! (52 – 5)!   =  52!/5! 47! =  
52 51 50 49 48 47!

5 4 3 2 1 47!
× × × × ×

× × × × ×

= 2,598,960

Example 2 : Example 2 : Example 2 : Example 2 : Example 2 : Let S be the collection of eight points in the plane with no three points on the
straight line. Find the number of triangles that have points of S as vertices.

Solution : Solution : Solution : Solution : Solution : Every choice of three points out of S determine a unique triangle. The order of the
points selected is unimportant as whatever be the order, we will get the same triangle. Hence,
the desired number is the number of combinations of eight things taken three at a time.
Therefore, we get

8C3 = 8!/3!5! = 8×7×6/3×2×1 = 56 choices.

Example 3 :Example 3 :Example 3 :Example 3 :Example 3 : A committee is to be formed of 3 persons out of 12. Find the number of ways of
forming such a committee.

Solution :Solution :Solution :Solution :Solution : We want to find out the number of combinations of 12 things taken 3 at a time and
this is given by
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12C3 = 12!/3!(12 – 3)! [ by the definition of nCr]

= 12!/3!9! = 12×11×10×9!/3!9! = 12×11×10/3×2 = 220

Example 4 :Example 4 :Example 4 :Example 4 :Example 4 : A committee of 7 members is to be chosen from 6 Chartered Accountants, 4
Economists and 5 Cost Accountants. In how may ways can this be done if in the committee,
there must be at least one member from each group and at least 3 Chartered Accountants?

Solution :Solution :Solution :Solution :Solution : The various methods of selecting the persons from the various groups are shown
below:

Committee of 7 membersCommittee of 7 membersCommittee of 7 membersCommittee of 7 membersCommittee of 7 members

C.A.sC.A.sC.A.sC.A.sC.A.s EconomistsEconomistsEconomistsEconomistsEconomists Cost AccountantsCost AccountantsCost AccountantsCost AccountantsCost Accountants

Method 1 3 2 2

Method 2 4 2 1

Method 3 4 1 2

Method 4 5 1 1

Method 5 3 3 1

Method 6 3 1 3

Number of ways of choosing the committee members by

Method 1 = 6C3×
4C2×

5C2 = 
6 5 4 4 3 5 4
3 2 1 2 1 2 1

× × × ×× ×
× × × × =20×6×10=1,200.

Method 2 = 6C4×
4C2×

5C1 = 
6 5 4 3 5
2 1 2 1 1

× ×× ×
× × = 15×6×5 = 450

Method 3 = 6C4×
4C1×

5C2 =
6 5 5 4

4
2 1 2 1

× ×× ×
× × = 15×4×10 = 600.

Method 4 = 6C5×
4C1×

5C1 = 6×4×5 = 120.

Method 5 = 6C3×
4C3×

5C1 = 
6 5 4 4 3 2

5
3 2 1 3 2 1

× × × ×× ×
× × × × = 20×4×5 = 400.

Method 6 = 6C3×
4C1×

5C3 = 
6 5 4 5 4

4
3 2 1 2 1

× × ×× ×
× × ×

= 20×4×10 = 800.

Therefore, total number of ways = 1,200 + 450 + 600 + 120 + 400 + 800 = 3,570

Example 5:Example 5:Example 5:Example 5:Example 5: A person has 12 friends of whom 8 are relatives. In how many ways can he invite 7
guests such that 5 of them are relatives?

Solution :Solution :Solution :Solution :Solution : Of the 12 friends, 8 are relatives and the remaining 4 are not relatives. He has to
invite 5 relatives and 2 friends as his guests. 5 relatives can be chosen out of 8 in 8C5 ways; 2
friends can be chosen out of 4 in 4C2 ways.
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Hence, by the fundamental principle, the number of ways in which he can invite 7 guests such
that 5 of them are relatives and 2 are friends.

= 8C5 × 4C2

= {8! / 5! (8 – 5)!} × {4! / 2! (4 – 2 )!} = [ ] 4 3 2 !
(8  7 6 5!)/5! 3! 8 7 6

2! 2!
× × ×

× × × × × = × ×

= 336.

Example 6 :Example 6 :Example 6 :Example 6 :Example 6 : A Company wishes to simultaneously promote two of its 6 department heads out
of 6 to assistant managers. In how many ways these promotions can take place?

Solution :Solution :Solution :Solution :Solution : This is a problem of combination. Hence, the promotions can be done in
6C2 = 6×5 / 2 = 15 ways

Example 7 :Example 7 :Example 7 :Example 7 :Example 7 : A building contractor needs three helpers and ten men apply. In how many ways
can these selections take place?

Solution :Solution :Solution :Solution :Solution : There is no regard for order in this problem. Hence, the contractor can select in any
of 10C3 ways i.e.,

(10 × 9 × 8) / (3 × 2 × 1) = 120 ways.

Example 8: Example 8: Example 8: Example 8: Example 8: In each case, find n:

Solution : Solution : Solution : Solution : Solution : (a) 4. nC2 = n+2 C3;  (b) n+2 Cn = 45.

(a) We are given that 4. nC2 = n+2 C3. Now applying the formula,

4n(n–1) /2 = (n+2) (n+1)n /3!
or, 4n(n–1) / 2 = (n+2)(n+1)n /3×2×1
or, 12(n–1)=(n+2) (n+1)
or, 12n–12 = n2 + 3n +2
or, n2 – 9n + 14 = 0.
or, n2 – 2n – 7n + 14 = 0.
or, (n–2) (n–7) = 0
∴ n=2   or   7.

(b) We are given that n+2Cn = 45. Applying the formula,

(n+2)!/{n!(n+2–n)!} = 45

or, (n+2) (n+1) n! / n! 2! = 45

n! (n + 2)!
4 =

2!(n 2)! 3!(n + 2 3)!
×

− −

or,
4 n.(n 1)(n 2)!

2!(n 2)!
× − −

−  = 
(n+2) (n+1) . n . (n 1)!

3! (n 1)!
−

−
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or, (n+1) (n+2) = 45×2! = 90

or, n2+3n–88 = 0

or, n2+11n–8n–88 = 0

or, (n+11) (n–8) = 0

Thus, n equals either – 11 or 8. But negative value is not possible. Therefore we conclude that
n=8.

Example 9 :Example 9 :Example 9 :Example 9 :Example 9 : A box contains 7 red, 6 white and 4 blue balls. How many selections of three balls
can be made so that (a) all three are red, (b) none is red, (c) one is of each colour?

Solution :Solution :Solution :Solution :Solution : (a) All three balls will be of red colour if they are taken out of 7 red balls and this can
be done in
7C3 = 7! / 3!(7–3)!

 = 7! / 3!4! = 7×6×5×4! / (3×2×4!) = 7×6×5 / (3×2) = 35 ways

Hence, 35 selections (groups) will be there such that all three balls are red.

(b) None of the three will be red if these are chosen from (6 white and 4 blue balls) 10 balls and
this can be done in

10C3 =  10!/{3!(10–3)!} = 10! / 3!7!

=  10×9×8×7! / (3×2×1×7!) = 10×9×8 /(3×2) = 120 ways.

Hence, the selections (or groups) of three such that none is red ball are 120 in number.
One red ball can be chosen from 7 balls in 7C1 = 7 ways. One white ball can be chosen from 6
white balls in 6C1 ways. One blue ball can be chosen from 4 blue balls in 4C1 = 4 ways. Hence, by
generalized fundamental principle, the number of groups of three balls such that one is of each
colour = 7×6×4 = 168 ways.
Example 10 :Example 10 :Example 10 :Example 10 :Example 10 : If 10Pr = 604800 and 10Cr = 120; find the value of r,
Solution :Solution :Solution :Solution :Solution : We know that nCr. 

rPr = nPr. We will us this equality to find r.
10Pr = 10Cr .r!

or, 604800 =120 ×r!
or, r! = 604800 ÷ 120 = 5040
But r! = 5040 = 7×6×4×3×2×1 = 7!

Therefore, r=7.

Properties of Properties of Properties of Properties of Properties of nnnnnCCCCCrrrrr : : : : :

1. nCr = nCn–r

We have nCr = n! / {r!(n–r)!} and nCn–r = n! / [(n–r)! {n–(n–r)}!] = n! / {(n–r)!(n–n+r)!}

Thus nCn–r = n! / {(n–r)! (n–n+r)!} = n! / {(n–r)!r!} = nCr

2. n+1Cr = nCr + nCr–1
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By definition,
nCr–1 + nCr = n! / {(r–1)! (n–r+1)!} + n! / {r!(n–r)!}

But r! = r×(r–1)! and (n–r+1)! = (n–r+1) × (n–r)!. Substituting these in above, we get

nC r–1 + nCr = n! 
1 1

+
(r 1)! (n r+1)(n r)! r(r 1)! (n r)!

 
 − − − − − 

= {n! / (r–1)! (n–r)!} {(1 / n–r+1) + (1/r) }

= {n! / (r–1)! (n–r)!} {(r+n–r+1) / r(n–r+1) }

= (n+1) n! / {r . (r–1)! (n–r)! . (n–r+1)}

= (n+1)! / {r!(n+1–r)!} = n+1Cr

3. nnnnnCCCCCooooo = n!/{0! (n–0)!} = n! / n! =11111.

4. nnnnnCCCCCnnnnn = n!/{n! (n–n)!} = n! / n! . 0! = 11111.

NoteNoteNoteNoteNote

(a) nCr has a meaning only when 0≤ r ≤ n, nCn–r has a meaning only when 0 ≤ n – r ≤ n.

(b) nCr and nCn–r are called complementary combinations, for if we form a group of r things
out of n different things, (n–r) remaining things which are not included in this group form
another group of rejected things. The number of groups of n different things, taken r at a
time should be equal to the number of groups of n different things taken (n–r) at a time.

Example 11 : Example 11 : Example 11 : Example 11 : Example 11 : Find r if 18Cr =  18C r+2

Solution : Solution : Solution : Solution : Solution : As nCr = nC n–r, we have 18 Cr=
18C 18–r

But it is given, 18Cr = 18C r+2

∴ 18C18–r = 18Cr+2

or, 18 – r = r+2

Solving, we get

2r = 18 – 2 = 16    i.e.,    r=8.

Example 12 :Example 12 :Example 12 :Example 12 :Example 12 : Prove that
nCr = n–2 C r–2 + 2 n–2 Cr–1 + n–2 Cr

Solution :Solution :Solution :Solution :Solution : R.H.SR.H.SR.H.SR.H.SR.H.S = n–2Cr–2 + n-2Cr–1 + n–2Cr–1 + n–2Cr

= n–1Cr–1 + n–1Cr [ using Property 2 listed earlier]

= (n–1)+1Cr [ using Property 2 again ]

= nCr = L.H.S.

Hence, the result

Example 13 :Example 13 :Example 13 :Example 13 :Example 13 : If 28 C2r : 
24C2r–4 = 225 : 11, find r.

Solution :Solution :Solution :Solution :Solution : We have nCr = n! / {r!(n–r)!} Now, substituting for n and r, we get
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28C2r = 28! / {(2r)!(28 – 2r)!},
24C2r–4 = 24! / [( 2r–4)! {24 – (2r–4)}!] = 24! / {(2r–4)!(28–2r)!}

We are given that 28C2r : 
24C 2r–4 = 225 : 11. Now we calculate,

=
28×27×26×25×24! (2r-4)! (28-2r)!

×
(2r)(2r-1)(2r-2)(2r-3)(2r-4)! (28-2r)! 24!

=
28 27 26 25 225

=
(2r)(2r 1)(2r 2)(2r 3) 11

× × ×
− − −

or, (2r) (2r–1) ( 2r–2) (2r–3) = 
× × × ×11 28 27 26 25

225
= 11×28×3×26

= 11×7×4×3×13×2

= 11×12×13×14

= 14×13×12×11

∴   2r= 14 i.e., r = 7

Example 14 : Example 14 : Example 14 : Example 14 : Example 14 : Find x if 12C5 +2 12C4     +
12C3 = 14Cx

Solution :Solution :Solution :Solution :Solution : L.H.S =  12C5+ 2 12C4 + 12C3

=   12C5+ 12C4 + 12C4 + 12C3

=   13C5 + 13C4

=   14 C5

Also nCr = nCn–r. Therefore 14C5 = 14C 14–5 = 14C9

Hence, L.H.S = 14C5 = 14C9 = 14Cx = R.H.S by the given equality

This implies, either x = 5 or x = 9.

Example 15 : Example 15 : Example 15 : Example 15 : Example 15 : Prove by reasoning that

(i) n+1Cr = nCr + nCr–1

(ii) nPr = n–1Pr +rn–1 Pr–1

Solution : Solution : Solution : Solution : Solution : (i) n+1 Cr stands for the number of combinations of (n+1) things taken r at a time. As
a specified thing can either be included in any combination or excluded from it, the total number
of combinations which can be combinations or (n+1) things taken r at a time is the sum of :

(a) combinations of (n+1) things taken r at time in which one specified thing is always included
and

−

28
2r

24
2r 4

C
C =

28! (2r 4)!(28 2r)!
÷

(2r)!(28 2r)! 24!
− −

−
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(b) the number of combinations of (n+1) things taken r at time from which the specified thing
is always excluded.

Now, in case (a), when a specified thing is always included , we have to find the number of
ways of selecting the remaining (r–1) things out of the remaining n things which is nCr–1.

Again, in case (b), since that specified thing is always excluded, we have to find the number of
ways of selecting r things out of the remaining n things,  which is nCr.

Thus, n+1 Cr = nCr–1+ nCr

(i) We devide nPr i.e., the number of permutations of n things take r at a time into two groups:

(a) those which contain a specified thing

(b) those which do not contain a specified thing.

In (a) we fix the particular thing in any one of the r places which can be done in r ways and then
fill up the remaining (r–1) places out of (n–1) things which give rise to n–1 Pr–1 ways. Thus, the
number of permutations in case (a) = r × n–1 Pr–1.

In case (b), one thing is to be excluded; therefore, r places are to be filled out of (n–1) things.
Therefore, number of permutations = n–1 Pr

Thus, total number of permutations = n–1Pr + r. n–1 P r–1

i.e.,   nPr = n–1Pr+r. n–1Pr–1

5.85.85.85.85.8 STSTSTSTSTANDARD RESULANDARD RESULANDARD RESULANDARD RESULANDARD RESULTSTSTSTSTS
We now proceed to examine some standard results in permutations and combinations. These
results have special application and hence are dealt with separately.

I.I.I.I.I. Permutations when some of the things are alike, taken all at a timePermutations when some of the things are alike, taken all at a timePermutations when some of the things are alike, taken all at a timePermutations when some of the things are alike, taken all at a timePermutations when some of the things are alike, taken all at a time
The number of ways p in which n things may be arranged among themselves, taking them all
at a time, when n1 of the things are exactly alike of one kind , n2 of the things are exactly alike
of another kind, n3 of the things are exactly alike of the third kind, and the rest all are different
is given by,

=
1 2 3

n!
p

n !n !n !

Proof : Let there be n things. Suppose n1 of them are exactly alike of one kind; n2 of them are
exactly alike of another kind; n3 of them are exactly alike of a third kind; let the rest (n–n1–n2–n3)
be all different.

Let p be the required permutations; then if the n things, all exactly alike of one kind were
replaced by n, different things different from any of the rest in any of the p permutations
without altering the position of any of the remaining things, we could form n1! new permutations.
Hence, we should obtain p × n1! permutations.

Similarly if n2 things exactly alike of another kind were replaced by n2 different things different
form any of the rest, the number of permutations would be p × n1! × n2!
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Similarly, if n3 things exactly alike of a third kind were replaced by n3 different things different
from any of the rest, the number of permutations would be p × n1! × n2! × n3! = n!

But now because of these changes all the n things are different and therefore, the possible
number of permutations when all of them are taken is n!.

Hence,   p×n1! × n2! n3! = n!

i.e.,    p = !n!n!n
!n

321

which is the required number of permutations. This results may be extended to cases where
there are different number of groups of alike things.

II.II.II.II.II. Permutations when each thing may be repeated once, twice,…upto r times in anyPermutations when each thing may be repeated once, twice,…upto r times in anyPermutations when each thing may be repeated once, twice,…upto r times in anyPermutations when each thing may be repeated once, twice,…upto r times in anyPermutations when each thing may be repeated once, twice,…upto r times in any
arrangement.arrangement.arrangement.arrangement.arrangement.

Result: Result: Result: Result: Result: The number of permutations of n things taken r at time when each thing may be
repeated r times in any arrangement is nr.

Proof: There are n different things and any of these may be chosen as the first thing. Hence,
there are n ways of choosing the first thing.

When this is done, we are again left with n different things and any of these may be chosen as
the second (as the same thing can be chosen again.)

Hence, by the fundamental principle, the two things can be chosen in n × n = n2 number of
ways.

Proceeding in this manner, and noting that at each stage we are to chose a thing from n different
things, the total number of ways in which r things can be chosen is obviously equal to n × n ×
………to r terms = nr.

III. Combinations of n different things taking some or all of n things at a timeIII. Combinations of n different things taking some or all of n things at a timeIII. Combinations of n different things taking some or all of n things at a timeIII. Combinations of n different things taking some or all of n things at a timeIII. Combinations of n different things taking some or all of n things at a time

Result : Result : Result : Result : Result : The total number of ways in which it is possible to form groups by taking some or all
of n things (2n –1).

Proof Proof Proof Proof Proof : Each of the n different things may be dealt with in two ways; it may either be taken or
left. Hence, by the generalised fundamental principle, the total number of ways of dealing with
n things :
2 × 2 × 2×……..2, n times i.e., 2n

But this include the case in which all the things are left, and therefore, rejecting this case, the
total number of ways of forming a group by taking some or all of n different things is 2n – 1.

IVIVIVIVIV. Combinations of n things taken some or all at a time when n. Combinations of n things taken some or all at a time when n. Combinations of n things taken some or all at a time when n. Combinations of n things taken some or all at a time when n. Combinations of n things taken some or all at a time when n11111 of the things are alike of of the things are alike of of the things are alike of of the things are alike of of the things are alike of
one kind, none kind, none kind, none kind, none kind, n22222 of the things are alike of another kind n of the things are alike of another kind n of the things are alike of another kind n of the things are alike of another kind n of the things are alike of another kind n33333 of the things are alike of a third of the things are alike of a third of the things are alike of a third of the things are alike of a third of the things are alike of a third
kind. etc.kind. etc.kind. etc.kind. etc.kind. etc.

In symbols, 
n n nC = 2 1r

r=1
∑ −
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Result : Result : Result : Result : Result : The total, number of ways in which it is possible to make groups by taking some or all
out of n (=n1 + n2 + n3 +…) things, where n1 things are alike of one kind and so on, is given by

{ (n1 + 1) ( n2 + 1) ( n3 + 1)…} –1

Proof : The n1 things all alike of one kind may be dealt with in (n1 + 1) ways. We may take 0, 1,
2,….n, of them. Similarly n2 things all alike of a second kind may be dealt with in (n2 +1) ways
and n3 things all alike of a third kind may de dealt with in (n3 +1) ways.

Proceeding in this way and using the generalised fundamental principle, the total number of
ways of dealing with all n ( = n1 + n2 + n3 +…) things, where n1, things are alike of one kind and
so on, is given by

(n1 + 1) ( n2 + 1) ( n3 + 1)…

But this includes the case in which none of the things are taken. Hence, rejecting this case, total
number of ways is {(n1 + 1) ( n2 + 1) ( n3 + 1)…} –1}

VVVVV. The notion of Independence in Combinations. The notion of Independence in Combinations. The notion of Independence in Combinations. The notion of Independence in Combinations. The notion of Independence in Combinations

Many applications of Combinations involve the selection of subsets from two or more
independent sets of objects or things. If the combination of a subset having r1 objects form a set
having n1 objects does not affect the combination of a subset having r2 objects from a different
set having n2 objects, we call the combinations as being independent. Whenever such
combinations are independent, any subset of the first set of objects can be combined with each
subset of the second set of the object to form a bigger combination. The total number of such
combinations can be found by applying the generalised fundamental principle.

Result : Result : Result : Result : Result : The combinations of selecting r1 things from a set having n1 objects and r2 things from
a set having n2 objects where combination of r1 things, r2 things are independent is given by

n n1 2
r r1 2

C × C

Note : Note : Note : Note : Note : This result can be extended to more than two sets of objects by a similar reasoning.

Example 1 : Example 1 : Example 1 : Example 1 : Example 1 : How many different permutations are possible from the letters of the word
CALCULUS?

Solution: Solution: Solution: Solution: Solution: The word CALCULUS consists of 8 letters of which 2 are C and 2 are L, 2 are U and
the rest are A and S. Hence , by result (I), the number of different permutations from the letters
of the word CALCULUS taken all at a time

= 
8!

2!2!2!1!1!

= 
× × × × × ×

× ×
8  7  6  5  4  3  2

2  2  2
  = 7 × 6 × 5 × 4 × 3 × 2 = 5040

Example 2 : Example 2 : Example 2 : Example 2 : Example 2 : In how many ways can 17 billiard balls be arranged , if 7 of them are black, 6 red
and 4 white?

Solution :Solution :Solution :Solution :Solution : We have, the required number of different arrangements:
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= 
17!

= 4084080
7! 6! 4!

Example 3 :Example 3 :Example 3 :Example 3 :Example 3 : An examination paper with 10 questions consists of 6 questions in Algebra and 4
questions in Geometry. At least one question from each section is to be attempted. In how
many ways can this be done?

Solution :Solution :Solution :Solution :Solution : A student must answer atleast one question from each section and he may answer
all questions from each section.

Consider Section I : Algebra. There are 6 questions and he may answer a question or may not
answer it. These are the two alternatives associated with each of the six questions. Hence, by the
generalised fundaments principle, he can deal with two questions in 2 × 2 ….6 factors = 26

number of ways. But this includes the possibility of none of the question from Algebra being
attempted. This cannot be so, as he must attempt at least one question from this section. Hence,
excluding this case, the number of ways in which Section I can be dealt with is (26 –1).

Similarly, the number of ways in which Section II can be dealt with is (24 –1).

Hence, by the Fundamental Principle, the examination paper can be attempted in (26 –1) (24 –1)
number of ways.

Example 4 : Example 4 : Example 4 : Example 4 : Example 4 : A man has 5 friends. In how many ways can he invite one or more of his friends to
dinner?

Solution :Solution :Solution :Solution :Solution : By result, (III) of this section, as he has to select one or more of his 5 friends, he can
do so in 25 – 1 = 31 ways.

Note : Note : Note : Note : Note : This can also be done in the way, outlines below. He can invite his friends one by one, in
twos, in threes, etc. and hence the number of ways.

= 5C1+ 5C2 +
5C3 +

5C4 +
5C5

= 5 + 10 +10 + 5 + 1= 31 ways.

Example 5 : Example 5 : Example 5 : Example 5 : Example 5 : There are 7 men and 3 ladies. Find the number of ways in which a committee of 6
can be formed of them if the committee is to include atleast two ladies?

Solution :Solution :Solution :Solution :Solution : The committee of six must include at least 2 ladies, i.e., two or more ladies. As there
are only 3 ladies, the following possibilities arise:

The committee of 6 consists of (i) 4 men and 2 ladies (ii) 3 men and 3 ladies.

The number of ways for (i) = 7C4 × 3C2 = 35 × 3 = 105;

The number of ways for (ii) = 7C3 × 3C3 = 35 × 1 = 35.

Hence the total number of ways of forming a committee so as to include at least two ladies =
105 +35 = 140.

Example 6 :Example 6 :Example 6 :Example 6 :Example 6 : Find the number of ways of selecting 4 letters from the word EXAMINATION.

Solution :Solution :Solution :Solution :Solution : There are 11 letters in the word of which A, I, N are repeated twice.
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Thus we have 11 letters of 8 different kinds (A, A), (I, I), (N, N), E, X, M, T, O.

The group of four selected letters may take any of the following forms:

(i) Two alike and other two alike

(ii) Two alike and other two different

(iii) All four different

In case (i), the number of ways = 3C2 = 3.

In case (ii), the number of ways = 3C1 × 7C2 = 3 × 21 = 63.

In case (iii), the number of ways = 8C4 = 
8  7  6  5
1  2  3  4

× × ×
× × × = 70

Hence , the required number of ways = 3 + 63 + 70 = 136 ways

Exercise 5 (C)Exercise 5 (C)Exercise 5 (C)Exercise 5 (C)Exercise 5 (C)

Choose the most appropriate option (a, b, c or d )Choose the most appropriate option (a, b, c or d )Choose the most appropriate option (a, b, c or d )Choose the most appropriate option (a, b, c or d )Choose the most appropriate option (a, b, c or d )

1. The value of 12C4 + 12C3 is
(a) 715 (b) 710 (C) 716 (d) none of these

2. If npr = 336 and nCr = 56, then n and r will be

(a) (3, 2) (b) (8, 3) (c) (7, 4) (d) none of these

3. If 18Cr = 18Cr+2, the value of rC5 is

(a) 55 (b) 50 (c) 56 (d) none of these

4. If n cr–1 = 56, ncr = 28 and n cr+1 = 8, then r is equal to

(a) 8 (b) 6 (c) 5 (d) none of these

5. A person has 8 friends. The number of ways in which he may invite one or more of them
to a dinner is.

(a) 250 (b) 255 (c) 200 (d) none of these

6. The number of ways in which a person can chose one or more of the four electrical
appliances : T.V, Refrigerator, Washing Machine and a cooler is
(a) 15 (b) 25 (c) 24 (d) none of these

7. If nc10 = nc14, then 25cn is

(a) 24 (b) 25 (c) 1 (d) none of these

8. Out of 7 gents and 4 ladies a committee of 5 is to be formed. The number of committees
such that each committee includes at least one lady is
(a) 400 (b) 440 (c) 441 (d) none of these

9. If 28c2r : 
24 c2r –4 = 225 : 11, then the value of r is

(a) 7 (b) 5 (c) 6 (d) none of these
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10. The number of diagonals in a decagon is
(a) 30 (b) 35 (c) 45 (d) none of these
Hint: The number of diagonals in a polygon of n sides is 1–2

n (n–3).

11. There are 12 points in a plane of which 5 are collinear. The number of triangles is
(a) 200 (b) 211 (c) 210 (d) none of these

12. The number of straight lines obtained by joining 16 points on a plane, no twice of them
being on the same line is
(a) 120 (b) 110 (c) 210 (d) none of these

13. At an election there are 5 candidates and 3 members are to be elected. A voter is entitled to
vote for any number of candidates not greater than the number to be elected. The number
of ways a voter choose to vote is

(a) 20 (b) 22 (c) 25 (d) none of these

14. Every two persons shakes hands with each other in a party and the total number of hand
shakes is 66. The number of guests in the party is
(a) 11 (b) 12 (c) 13 (d) 14

15. The number of parallelograms that can be formed from a set of four parallel lines intersecting
another set of three parallel lines is
(a) 6 (b) 18 (c) 12 (d) 9

16. The number of ways in which 12 students can be equally divided into three groups is
(a) 5775 (b) 7575 (c) 7755 (d) none of these

17. The number of ways in which 15 mangoes can be equally divided among 3 students is

(a) 15  / 4(5 ) (b) 15  / 3(5 ) (c) 15  / 2(5 ) (d) none of these

18. 8 points are marked on the circumference of a circle. The number of chords obtained by
joining these in pairs is
(a) 25 (b) 27 (c) 28 (d) none of these

19. A committee of 3 ladies and 4 gents is to be formed out of 8 ladies and 7 gents. Mrs. X
refuses to serve in a committee in which Mr. Y is a member. The number of such committees
is
(a) 1530 (b) 1500 (c) 1520 (d) 1540

(a) 501 (b) 500 (c) 502 (d) 499

21. The Supreme Court has given a 6 to 3 decision upholding a lower court; the number of
ways it can give a majority decision reversing the lower court is
(a) 256 (b) 276 (c) 245 (d) 226.

22. Five bulbs of which three are defective are to be tried in two bulb points in a dark room.
Number of trials the room shall be lighted is
(a) 6 (b) 8 (c) 5 (d) 7.

20. If 500 499 n= +92 92 91C C C  then x is
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 MISCELLANEOUS EXAMPLE MISCELLANEOUS EXAMPLE MISCELLANEOUS EXAMPLE MISCELLANEOUS EXAMPLE MISCELLANEOUS EXAMPLE
Exercise 5 (D)Exercise 5 (D)Exercise 5 (D)Exercise 5 (D)Exercise 5 (D)

Choose the appropriate option a,b,c or dChoose the appropriate option a,b,c or dChoose the appropriate option a,b,c or dChoose the appropriate option a,b,c or dChoose the appropriate option a,b,c or d

1. The letters of the words CALCUTTA and AMERICA are arranged in all possible ways.
The ratio of the number of there arrangements is

(a) 1:2 (b) 2:1 (c) 2:2 (d) none of these

2. The ways of selecting 4 letters from the word EXAMINATION is

(a) 136 (b) 130 (c) 125 (d) none of these

3. The number of different words that can be formed with 12 consonants and 5 vowels by
taking 4 consonants and 3 vowels in each word is

(a) 12c4 × 5c3 (b) 17c7 (c) 4950 × 7! (d) none of these

4. Eight guests have to be seated 4 on each side of a long rectangular table.2 particular guests
desire to sit on one side of the table and 3 on the other side. The number of ways in which
the sitting arrangements can be made is

(a) 1732 (b) 1728 (c) 1730 (d) 1278.

5 A question paper contains 6 questions, each having an alternative.

The number of ways an examine can answer one or more questions is

(a) 720 (b) 728 (c) 729 (d) none of these

6. 51c31 is equal to

(a) 51c20 (b) 2.50c20 (c) 2.45c15 (d) none of these

7. The number of words that can be made by rearranging the letters of the word APURNA
so that vowels and consonants appear alternate is

(a) 18 (b) 35 (c) 36 (d) none of these

8. The number of arrangement of the letters of the word COMMERCE is

(a) 8 (b) 8 / ( 2 2 2) (c) 7 (d) none of these

9. A candidate is required to answer 6 out of 12 questions which are divided into two groups
containing 6 questions in each group. He is not permitted to attempt not more than four
from any group. The number of choices are.

(a) 750 (b) 850 (c) 800 (d) none of these

10. The results of 8 matches (Win, Loss or Draw) are to be predicted. The number of different
forecasts containing exactly 6 correct results is

(a) 316 (b) 214 (c) 112 (d) none of these
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11. The number of ways in which 8 different beads be strung on a necklace is

(a) 2500 (b) 2520 (c) 2250 (d) none of these

12. The number of different factors the number 75600 has is

(a) 120 (b) 121 (c) 119 (d) none of these

13. The number of 4 digit numbers formed with the digits 1, 1, 2, 2, 3, 4 is

(a) 100 (b) 101 (c) 201 (d) none of these

14. The number of ways a person can contribute to a fund out of 1 ten-rupee note, 1 five-
rupee note, 1 two-rupee and 1 one rupee note is

(a) 15 (b) 25 (c) 10 (d) none of these

15. The number of ways in which 9 things can be divided into twice groups containing 2,3,
and 4 things respectively is

(a) 1250 (b) 1260 (c) 1200 (d) none of these

16. (n–1)Pr + r.(n–1) P (r–1) is equal to

(a) nCr (b) ( )/ −n r n r (c) npr (d) none of these

17. 2n  can be written as

(a) 2n { 1.3.5….(2n–1)} n (b) 2n n (c) {1.3.5…..(2n –1)} (d) none of these

18. The number of even numbers greater than 300 can be formed with the digits 1, 2, 3, 4, 5
without repetion is

(a) 110 (b) 112 (c) 111 (d) none of these

19. 5 letters are written and there are five letter-boxes. The number of ways the letters can be
dropped into the boxes, are in each

(a) 119 (b) 120 (c) 121 (d) none of these

20. nC1 + nC2 +
 nC3 + nC4 + …..+ equals

(a) 2n –1 (b) 2n (c) 2n +1 (d) none of these
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ANSWERSANSWERSANSWERSANSWERSANSWERS

Exercise 5(A)Exercise 5(A)Exercise 5(A)Exercise 5(A)Exercise 5(A)
1. c 2. b 3. a 4. b 5. c 6. b 7. d 8. a

9. b 10. c 11. b 12. a 13. c 14. a 15. a 16. c

17. a 18. b 19. d 20. a 21 c 22 c 23 a

Exercise 5 (B)Exercise 5 (B)Exercise 5 (B)Exercise 5 (B)Exercise 5 (B)

1. c 2. a 3. b 4. c 5. b 6. b 7. c 8. d

9. a 10. c 11. c 12. b 13. c 14. b 15. a 16. b

17. b 18. c 19. c 20. a 21 a

Exercise 5 (C)Exercise 5 (C)Exercise 5 (C)Exercise 5 (C)Exercise 5 (C)

1. a 2. b 3. c 4. b 5. b 6. a 7. b 8. c

9. a 10. b 11. c 12. a 13. c 14. b 15. b 16. a

17. b 18. c 19. d 20. d 21. a 22. d

Exercise 5 (D)Exercise 5 (D)Exercise 5 (D)Exercise 5 (D)Exercise 5 (D)

1. b 2. a 3. c 4. b 5. b 6. a 7. c 8. b&c

9. b 10. c 11. b 12. c 13. d 14. a 15. b 16. c

17. a 18. c 19. b 20. a
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ADDITIONAL QUESTION BANKADDITIONAL QUESTION BANKADDITIONAL QUESTION BANKADDITIONAL QUESTION BANKADDITIONAL QUESTION BANK
1. There are 6 routes for journey from station A to station B. In how many ways you

may go from A to B and return if for returning you make a choice of any of the
routes?

(A) 6 (B) 12 (C) 36 (D) 30

2. As per question No.(1) if you decided to take the same route you may do it in _______
number of ways.

(A) 6 (B) 12 (C) 36 (D) 30

3. As per question No.(1) if you decided not to take the same route you may do it in _______
number of ways.

(A) 6 (B) 12 (C) 36 (D) 30

4. How many telephones connections may be allotted with 8 digits form the numbers 0 1 2
…….9?

(A) 810 (B) !10 (C) 8
10C (D) 8

10P

5. In how many different ways 3 rings of a lock can not combine when each ring has digits
0 1 2……9 leading to unsuccessful events?

(A) 999 (B) 310 (C) 10! (D) 997

6. A dealer provides you Maruti Car & Van in 2 body patterns and 5 different colours. How
many choices are open to you?

(A) 2 (B) 7 (C) 20 (D) 10

7. 3 persons go into a railway carriage having 8 seats. In how many ways they may occupy
the seats?

(A) �

�
� (B) �

�
� (C) �

�
� (D) None

8. Find how many five-letter words can be formed out of the word “logarithms” (the words
may not convey any meaning)

(A) ��

�
� (B) ��

�
� (C) �

	
� (D) None

9. How many 4 digits numbers greater than 7000 can be formed out of the digits 3 5 7 8 9?

(A) 24 (B) 48 (C) 72 (D) 50

10. In how many ways 5 Sanskrit 3 English and 3 Hindi books be arranged keeping the books
of the same language together?

(A) 5! × 3! × 3! × 3! (B) 5! × 3! × 3! (C) �

�
� (D) None
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11. In how many ways can 6 boys and 6 girls be seated around a table so that no 2 boys are
adjacent?

(A) 4! × 5! (B) 5! × 6! (C) 




� (D) 5 × 




�

12. In how many ways can 4 Americans and 4 English men be seated at a round table so that
no 2 Americans may be together?

(A) 4! × 3! (B) 	

	
� (C) 3 × 	

	
� (D) 	

	
�

13. The chief ministers of 17 states meet to discuss the hike in oil price at a round table. In
how many ways they seat themselves if the Kerala and Bengal chief ministers choose to sit
together?

(A) 15! × 2! (B) 17! × 2! (C) 16! × 2! (D) None

14. The number of permutation of the word “accountant” is

(A) 10! ÷ (2!)4 (B) 10! ÷ (2!)3 (C) 10! (D) None

15. The number of permutation of the word “engineering” is

(A) 11! ÷ [(3!)2(2!)2] (B) 11! (C) 11! ÷ [(3!)(2!)] (D) None

16. The number of arrangements that can be made with the word “assassination” is

(A) 13! ÷ [3! × 4! × (2!)2] (B) 13! ÷ [3! × 4! × 2!] (C) 13! (D) None

17. How many numbers higher than a million can be formed with the digits 0445553?

(A) 420 (B) 360 (C) 7! (D) None

18. The number of permutation of the word “Allahabad” is

(A) 9! ÷ (4! × 2!) (B) 9! ÷ 4! (C) 9! (D) None

19. In how many ways the vowels of the word “Allahabad” will occupy the even places?

(A) 120 (B) 60 (C) 30 (D) None

20. How many arrangements can be made with the letter of the word “mathematics”?

(A) 11! ÷ (2!)3 (B) 11! ÷ (2!)2 (C) 11! (D) None

21. In how many ways of the word “mathematics” be arranged so that the vowels occur
together?

(A) 11! ÷ (2!)3 (B) (8! × 4!) ÷ (2!)3 (C) 12! ÷ (2!)3 (D) None

22. In how many ways can the letters of the word “arrange” be arranged?

(A) 1200 (B) 1250 (C) 1260 (D) 1300
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23. In how many ways the word “arrange” be arranged such that the 2 ‘r’s come together?

(A) 400 (B) 440 (C) 360 (D) None

24. In how many ways the word “arrange” be arranged such that the 2 ‘r’s do not come
together?

(A) 1000 (B) 900 (C) 800 (D) None

25. In how many ways the word “arrange” be arranged such that the 2 ‘r’s and 2 ‘a’s come
together?

(A) 120 (B) 130 (C) 140 (D) None

26. If  �

	
�  = 12 �

�
� the value of n is

(A) 12 (B) 6 (C) -1 (D) both 6 -1

27. If  � ��

� �
	� � ����� �  the value of n is

(A) 12 (B) 13 (C) 14 (D) 15

28. � ��

� ��
� � �� �   is

(A) n (B) n! (C) (n–1)! (D) �

�
�

29. The total number of numbers less than 1000 and divisible by 5 formed with 0 1 2…..9
such that each digit does not occur more than once in each number is

(A) 150 (B) 152 (C) 154 (D) None

30. The number of ways in which 8 examination papers be arranged so that the best and
worst papers never come together is

(A) 8! – 2 × 7! (B) 8! – 7! (C) 8! (D) None

31. In how many ways can 4 boys and 3 girls stand in a row so that no two girls are together?

(A) 5! × 4! ÷ 3! (B) �

�
� ���� (C) �

�
� ���� (D) None

32. In how many ways can 3 boys and 4 girls be arranged in a row so that all the three boys are
together?

(A) 4! × 3! (B) 5! × 3! (C) 7! (D) None

33. How many six digit numbers can be formed out of 4 5 …..9 no digits being repeated?

(A) 6! – 5! (B) 6! (C) 6! + 5! (D) None

÷
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34. In terms of question No.(33) how many of them are not divisible by 5?

(A) 6! – 5! (B) 6! (C) 6! + 5! (D) None

35. In how many ways the word “failure” can be arranged so that the consonants occupy
only the odd positions?

(A) 4! (B) (4!)2 (C) 7! ÷ 3! (D) None

36. In how many ways can the word “strange” be arranged so that the vowels are never
separated?

(A) 6! × 2! (B) 7! (C) 7! ÷ 2! (D) None

37. In how many ways can the word “strange” be arranged so that the vowels never come
together?

(A) 7! – 6! × 2! (B) 7! – 6! (C) �



� (D) None

38. In how many ways can the word “strange” be arranged so that the vowels ocupy only
the odd places?

(A) �

�
� (B) � 	

� 	
� ��� � (C) � 	

� �
� ��� � (D) None

39. How many four digits number can be formed by using 1 2 ……..7?

(A) �

	
� (B) �

�
� (C) �

	
� (D) None

40. How any four digits numbers can be formed by using 1 2 …..7 which are grater than
3400?

(A) 500 (B) 550 (C) 560 (D) None

41. In how many ways it is possible to write the word “zenith” in a dictionary?

(A) 




� (B) 




� (C) 


�
� (D) None

42. In terms of question No.(41) what is the rank or order of the word “zenith” in the dictionary?

(A) 613 (B) 615 (C) 616 (D) 618

43. If  �� ���

� �
�� ��� � ���

��
 the value of n is

(A) 8 (B) 4 (C) 5 (D) 2

44. If  ��� ���


 	
� ��� � ����	  the value of n is

(A) 8 (B) 4 (C) 5 (D) 2
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45. If  � �

� ��
� ��� � ���
�  the value of n is

(A) 8 (B) 4 (C) 5 (D) 2

46. There are 4 routes for going from Dumdum to Sealdah and 5 routes for going from Sealdah
to Chandni. In how many different ways can you go from Dumdum to Chandni via
Sealdah?

(A) 9 (B) 1 (C) 20 (D) None

47. In how many ways can 5 people occupy 8 vacant chairs?

(A) 5720 (B) 6720 (C) 7720 (D) None

48. If there are 50 stations on a railway line how many different kinds of single first class
tickets may be printed to enable a passenger to travel from one station to other?

(A) 2500 (B) 2450 (C) 2400 (D) None

49. How many six digits numbers can be formed with the digits 953170?

(A) 600 (B) 720 (C) 120 (D) None

50. In terms of question No.(49) how many numbers will have 0’s in ten’s palce?

(A) 600 (B) 720 (C) 120 (D) None

51. How many words can be formed with the letters of the word “Sunday”?

(A) 6! (B) 5! (C) 4! (D) None

52. How many words can be formed beginning with ‘n’ with the letters of the word “Sunday”?

(A) 6! (B) 5! (C) 4! (D) None

53. How many words can be formed beginning with ‘n’ and ending in ‘a’ with the letters of
the word “Sunday”?

(A) 6! (B) 5! (C) 4! (D) None

54. How many different arrangements can be made with the letters of the word “Monday”?

(A) 6! (B) 8! (C) 4! (D) None

55. How many different arrangements can be made with the letters of the word “”oriental”?

(A) 6! (B) 8! (C) 4! (D) None

56. How many different arrangements can be made beginning with ‘a’ and ending in ‘n’ with
the letters of the word “Monday”?

(A) 6! (B) 8! (C) 4! (D) None
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57. How many different arrangements can be made beginning with ‘a’ and ending with ‘n’
with the letters of the word “oriental”?

(A) 6! (B) 8! (C) 4! (D) None

58. In how many ways can a consonant and a vowel be chosen out of the letters of the word
“logarithm”?

(A) 18 (B) 15 (C) 3 (D) None

59. In how many ways can a consonant and a vowel be chosen out of the letters of the word
“equation”?

(A) 18 (B) 15 (C) 3 (D) None

60. How many different words can be formed with the letters of the word “triangle”?

(A) 8! (B) 7! (C) 6! (D) 2! × 6!

61. How many different words can be formed beginning with ‘t’ of the word “triangle”?

(A) 8! (B) 7! (C) 6! (D) 2! × 6!

62. How many different words can be formed beginning with ‘e’ of the letters of the word
“triangle”?

(A) 8! (B) 7! (C) 6! (D) 2! × 6!

63. In question No.(60) how many of them will begin with ‘t’ and end with ‘e’?

(A) 8! (B) 7! (C) 6! (D) 2! × 6!

64. In question No.(60) how many of them have ‘t’ and ‘e’ in the end places?

(A) 8! (B) 7! (C) 6! (D) 2! × 6!

65. In question No.(60) how many of them have consonants never together?

(A) 8! – 4! × 5! (B) 


�
� ��� (C) 2! × 5!×3! (D) 	

�
� ���

66. In question No.(60) how many of them have arrangements that no two vowels are together?

(A) 8! – 4! × 5! (B) 


�
� ��� (C) 2! × 5! ×3! (D) 	

�
� ���

67. In question No.(60) how many of them have arrangements that consonants and  vowels
are always together?

(A) 8! – 4! × 5! (B) 


�
� ��� (C) 2! × 5! ×3! (D) 	

�
� ���

68. In question No.(60) how many of them have arrangements that vowels occupy odd places?

(A) 8! – 4! × 5! (B) 


�
� ��� (C) 2! × 5! ×3! (D) 	

�
� ���
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69. In question No.(60) how many of them have arrangements that the relative positions of
the vowels and consonants remain unchanged?

(A) 8! – 4! × 5! (B) 


�
� ����� (C) 2! × 5! ×3! (D) 5! × 3!

70. In how many ways the letters of the word “failure” can be arranged with the condition
that the four vowels are always together?

(A) ( )�

	� (B) 4! (C) 7! (D) None

71. In how many ways n books can be arranged so that two particular books are not together?

(A) (n – 1) × (n – 1)! (B) n × n! (C) (n – 2) × (n – 2)! (D) None

72. In how many ways can 3 books on Mathematics and 5 books on English be placed so that
books on the same subject always remain together?

(A) 1440 (B) 240 (C) 480 (D) 144

73. 6 papers are set in an examination out of which two are mathematical. In how many ways
can the papers be arranged so that 2 mathematical papers are together?

(A) 1440 (B) 240 (C) 480 (D) 144

74. In question No.(73) will your answer be different if 2 mathematical papers are not
consecutive?

(A) 1440 (B) 240 (C) 480 (D) 144

75. The number of ways the letters of the word “signal” can be arranged such that the vowels
occupy only odd positions is________.

(A) 1440 (B) 240 (C) 480 (D) 144

76. In how many ways can be letters of the word “violent” be arranged so that the vowels
occupy even places only?

(A) 1440 (B) 240 (C) 480 (D) 144

77. How many numbers between 1000 and 10000 can be formed with 1, 2, …..9?

(A) 3024 (B) 60 (C) 78 (D) None

78. How many numbers between 3000 and 4000 can be formed with 1, 2, …..6?

(A) 3024 (B) 60 (C) 78 (D) None

79. How many numbers greater than 23000 can be formed with 1, 2, …..5?

(A) 3024 (B) 60 (C) 78 (D) None

Copyright -The Institute of Chartered Accountants of India



� � � � ������� 	
��������� ���

������ ����	
��� ��� 
	���������� ���� ������������

80. If you have 5 copies of one book, 4 copies of each of two books, 6 copies each of three
books and single copy of 8 books you may arrange it in ________number of ways.

(A) ( ) ( )� �

���

��� 	� � 
�
(B) ( ) ( )� �

���

������ 	� � 
�
(C) ( )�

���

������	�� 
�
(D) 

���

������	��
�

81. How many arrangements can be made out of the letters of the word “permutation”?

(A)
��

��

�
�

�
(B) ��

��
� (C) ��

��
� (D) None

82. How many numbers greater than a million can be formed with the digits: One 0 Two 1
One 3 and Three 7?

(A) 360 (B) 240 (C) 840 (D) 20

83. How many arrangements can be made out of the letters of the word “interference” so that
no two consonant are together?

(A) 360 (B) 240 (C) 840 (D) 20

84. How many different words can be formed with the letter of the word “Hariyana”?

(A) 360 (B) 240 (C) 840 (D) 20

85. In question No.(84) how many arrangements are possible keeping ‘h’ and ‘n’ together?

(A) 360 (B) 240 (C) 840 (D) 20

86. In question No.(84) how many arrangements are possible beginning with ‘h’ and ending
with ‘n’?

(A) 360 (B) 240 (C) 840 (D) 20

87. A computer has 5 terminals and each terminal is capable of four distinct positions including
the positions of rest what is the total number of signals that can be made?

(A) 20 (B) 1020 (C) 1023 (D) None

88. In how many ways can 9 letters be posted in 4 letter boxes?

(A) �
	 (B) �

	 (C) �

	
� (D) �

	
�

89. In how many ways can 8 beads of different colour be strung on a ring?

(A) 7! ÷ 2 (B) 7! (C) 8! (D) 8! ÷ 2

90. In how many ways can 8 boys form a ring?

(A) 7! ÷ 2 (B) 7! (C) 8! (D) 8! ÷ 2
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91. In how many ways 6 men can sit at a round table so that all shall not have the same
neighbours in any two occasions?

(A) 5! ÷ 2 (B) 5! (C) (7!)2 (D) 7!

92. In how many ways 7 men and 6 women sit at a round table so that no two men are
together?

(A) 5! ÷ 2 (B) 5! (C) (7!)2 (D) 7!

93. In how many ways 4 men and 3 women are arranged at a round table if the women never
sit together?

(A) 6 × 6! (B) 6! (C) 7! (D) None

94. In how many ways 4 men and 3 women are arranged at a round table if the women
always sit together?

(A) 6 × 6! (B) 6! (C) 7! (D) None

95. A family comprised of an old man, 6 adults and 4 children is to be seated is a row with
the condition that the children would occupy both the ends and never occupy either side
of the old man. How many sitting arrangements are possible?

(A) 4! × 5! × 7! (B) 4! × 5! × 6! (C) 2! × 4! × 5! × 6! (D) None

96. The total number of sitting arrangements of 7 persons in a row if 3 persons sit together in
a particular order is _________.

(A) 5! (B) 6! (C) 2! × 5! (D) None

97. The total number of sitting arrangements of 7 persons in a row if 3 persons sit together in
any order is _________.

(A) 5! (B) 6! (C) 2! × 5! (D) None

98. The total number of sitting arrangements of 7 persons in a row if two persons occupy the
end seats is _________.

(A) 5! (B) 6! (C) 2! × 5! (D) None

99. The total number of sitting arrangements of 7 persons in a row if one person occupies the
middle seat is _________.

(A) 5! (B) 6! (C) 2! × 5! (D) None

100. If all the permutations of the letters of the word “chalk” are written in a dictionary the
rank of this word will be ____________.

(A) 30 (B) 31 (C) 32 (D) None
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101. In a ration shop queue 2 boys, 2 girls, and 2 men are standing in such a way that the boys
the girls and the men are together each. The total number of ways of arranging the queue
is ______.

(A) 42 (B) 48 (C) 24 (D) None

102. If you have to make a choice of 7 questions out of 10 questions set, you can do it in
_______ number of ways.

(A) ��

�
� (B) ��

�
� (C) 7! × ��

�
� (D) None

103. From 6 boys and 4 girls 5 are to be seated. If there must be exactly 2 girls the number of
ways of selection is ______.

(A) 240 (B) 120 (C) 60 (D) None

104. In your office 4 posts have fallen vacant. In how many ways a selection out of 31 candidates
can be made if one candidate is always included?

(A) ��

�
� (B) ��

	
� (C) ��

�
� (D) ��

	
�

105. In question No.(104) would your answer be different if one candidate is always excluded?

(A) ��

�
� (B) ��

	
� (C) ��

�
� (D) ��

	
�

106. Out of 8 different balls taken three at a time without taking the same three together more
than once for how many number of times you can select a particular ball?

(A) �

�
� (B) �

�
� (C) �

�
� (D) �

�
�

107. In question No.(106) for how many number of times you can select any ball?

(A) �

�
� (B) �

�
� (C) �

�
� (D) �

�
�

108. In your college Union Election you have to choose candidates. Out of 5 candidates 3 are to
be elected and you are entitled to vote for any number of candidates but not exceeding
the number to be elected. You can do it in _________ ways.

(A) 25 (B) 5 (C) 10 (D) None

109. In a paper from 2 groups of 5 questions each you have to answer any 6 questions attempting
at least 2 questions from each group. This is possible in ________ number of ways.

(A) 50 (B) 100 (C) 200 (D) None

110. Out of 10 consonants and 4 vowels how many words can be formed each containing 6
consonant and 3 vowels?

(A) �� 	


 �
� � � (B) �� 	


 �
� � � ��� (C) �� 	


 �
� � � ���� (D) None
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111. A boat’s crew consist of 8 men, 3 of whom can row only on one side and 2 only on the
other. The number of ways in which the crew can be arranged is _________.

(A) ( )��

�
� � 	� (B) �

�
� �	� (C) �

�
� (D) None

112. A party of 6 is to be formed from 10 men and 7 women so as to include 3 men and 3
women. In how many ways the party can be formed if two particular women refuse to
join it?

(A) 4200 (B) 600 (C) 3600 (D) None

113. You are selecting a cricket team of first 11 players out of 16 including 4 bowlers and 2
wicket-keepers. In how many ways you can do it so that the team contains exactly 3
bowlers and 1 wicket-keeper?

(A) 960 (B) 840 (C) 420 (D) 252

114. In question No.(113) would your answer be different if the team contains at least 3 bowlers
and at least 1 wicket-keeper?

(A) 2472 (B) 960 (C) 840 (D) 420

115. A team of 12 men is to be formed out of n persons. Then the number of times 2 men ‘A’
and ‘B’ are together is ___________.

(A) �

��
� (B) ��

��
� (C) ��

��
� (D) None

116. In question No.(115) the number of times 3 men ‘C’ ‘D’ and ‘E’ are together is _____.

(A) �

��
� (B) ��

��
� (C) ��

��
� (D) ��

��
�

117. In question No.(115) it is found that ‘A’ and ‘B’ are three times as often together as ‘C’ ‘D’
and ‘E’ are. Then the value of n is ____________.

(A) 32 (B) 23 (C) 9 (D) None

118. The number of combinations that can be made by taking 4 letters of the word “combination”
is _______.

(A) 70 (B) 63 (C) 3 (D) 136

119. If �� ��

� �
� � � ��  then the value of n is __________

(A) 0 (B) –2 (C) 8 (D) None

120. If  � ��


 �
��� � � �

	
 then the value of n is __________

(A) 15 (B) 14 (C) 13 (D) None
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121. In order to pass PE-II examination minimum marks have to be secured in each of 7 subjects.
In how many ways can a pupil fail?

(A) 128 (B) 64 (C) 127 (D) 63

122. In how many ways you can answer one or more questions out of 6 questions each having
an alternative?

(A) 728 (B) 729 (C) 128 (D) 129

123. There are 12 points in a plane no 3 of which are collinear except that 6 points which are
collinear. The number of different straight lines is _________.

(A) 50 (B) 51 (C) 52 (D) None

124. In question No.(123) the number of different triangles formed by joining the straight lines
is ________.

(A) 220 (B) 20 (C) 200 (D) None

125. A committee is to be formed of 2 teachers and 3 students out of 10 teachers and 20 students.
The numbers of ways in which this can be done is ______.

(A) �� ��

� �
� � � (B) � ��

� �
� � � (C) �� ��

� �
� � � (D) None

126. In question No.(125) if a particular teacher is included the number of ways in which this
can be done is _________.

(A) �� ��

� �
� � � (B) � ��

� �
� � � (C) �� ��

� �
� � � (D) None

127. In question No.(125) if a particular student is excluded the number of ways in which this
can be done is _________.

(A) �� ��

� �
� � � (B) � ��

� �
� � � (C) �� ��

� �
� � � (D) None

128. In how many ways 21 red balls and 19 blue balls can be arranged in a row so that no two
blue balls are together?

(A) 1540 (B) 1520 (C) 1560 (D) None

129. In forming a committee of 5 out of 5 males and 6 females how many choices you have to
make so that there are 3 males and 2 females?

(A) 150 (B) 200 (C) 1 (D) 461

130. In question No.(129) how many choices you have to make if there are 2 males?

(A) 150 (B) 200 (C) 1 (D) 461

131. In question No.(129) how many choices you have to make if there is no female?

(A) 150 (B) 200 (C) 1 (D) 461
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132. In question No.(129) how many choices you have to make if there is at least one female?

(A) 150 (B) 200 (C) 1 (D) 461

133. In question No.(129) how many choices you have to make if there are not more than 3
males?

(A) 200 (B) 1 (C) 461 (D) 401

134. From 7 men and 4 women a committee of 5 is to be formed. In how many ways can this
be done to include at least one woman?

(A) 441 (B) 440 (C) 420 (D) None

135. You have to make a choice of 4 balls out of one red one blue and ten white balls. The
number of ways this can be done to always include the red ball is ___________.

(A) ��

�
� (B) ��

�
� (C) ��

	
� (D) None

136. In question No.(135) the number of ways in which this can be done to include the red ball
but exclude the blue ball always is _______.

(A) ��

�
� (B) ��

�
� (C) ��

	
� (D) None

137. In question No.(135) the number of ways in which this can be done to exclude both the
red and blues ball is _______.

(A) ��

�
� (B) ��

�
� (C) ��

	
� (D) None

138. Out of 6 members belonging to party ‘A’ and 4 to party ‘B’ in how many ways a committee
of 5 can be selected so that members of party ‘A’ are in a majority?

(A) 180 (B) 186 (C) 185 (D) 184

139. A question paper divided into 2 groups consisting of 3 and 4 questions respectively carries
the note “it is not required to answer all the questions. One question must be answered
from each group”. In how many ways you can select the questions?

(A) 10 (B) 11 (C) 12 (D) 13

140. The number of words which can be formed with 2 different consonants and 1 vowel out
of 7 different consonants and 3 different vowels the vowel to lie between 2 consonants is
______.

(A) 3 × 7 × 6 (B) 2 × 3 × 7 × 6 (C) 2 × 3 × 7 (D) None

141. How many combinations can be formed of 8 counters marked 1 2 …8 taking 4 at a time
there being at least one odd and even numbered counter in each combination?

(A) 68 (B) 66 (C) 64 (D) 62
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142. Find the number of ways in which a selection of 4 letters can be made from the word
“Mathematics”.

(A) 130 (B) 132 (C) 134 (D) 136

143. Find the number of ways in which an arrangement of 4 letters can be made from the
word “Mathematics”.

(A) 1680 (B) 756 (C) 18 (D) 2454

144. In a cross word puzzle 20 words are to be guessed of which 8 words have each an alternative
solution. The number of possible solution is ________.

(A) ( )�

��� (B) ��

�

� (C) ��

�
� (D) None

ANSWERSANSWERSANSWERSANSWERSANSWERS

1)                  C 19)              B 37)              A 55)              B 73)              B 91)              A 109)          C 127)          C

2)                  A 20)              A 38)              C 56)              C 74)              C 92)              C 110)          B 128)          A

3)                  D 21)              B 39)              A 57)              A 75)              D 93)              A 111)          A 129)          A

4)                  A 22)              C 40)              C 58)              A 76)              D 94)              B 112)          C 130)          B

5)                  A 23)              C 41)              A 59)              B 77)              A 95)              A 113)          A 131)          C

6)                  C 24)              B 42)              C 60)              A 78)              B 96)              A 114)          A 132)          D

7)                  A 25)              A 43)              A 61)              B 79)              C 97)              B 115)          C 133)          D

8)                  A 26)              B 44)              B 62)              B 80)              A 98)              C 116)          D 134)          A

9)                  C 27)              D 45)              C 63)              C 81)              A 99)              B 117)          A 135)          A

10)              A 28)              A 46)              C 64)              D 82)              A 100)          C 118)          D 136)          B

11)              B 29)              C 47)              B 65)              A 83)              B 101)          B 119)          C 137)          C

12)              A 30)              A 48)              B 66)              B 84)              C 102)          A 120)          A 138)          B

13)              A 31)              A 49)              A 67)              C 85)              B 103)          B 121)          C 139)          C

14)              A 32)              B 50)              C 68)              D 86)              D 104)          A 122)          A 140)          A

15)              A 33)              B 51)              A 69)              D 87)              C 105)          B 123)          C 141)          A

16)              A 34)              A 52)              B 70)              A 88)              A 106)          A 124)          C 142)          D

17)              B 35)              B 53)              C 71)              A 89)              A 107)          B 125)          A 143)          D

18)              A 36)              A 54)              A 72)              A 90)              B 108)          A 126)          B 144)          A
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