Cost and Management Accounting

Sixth Edition Students' Manual

Colin Drury

THOMSON

THOMSON

Cost and Management Accounting 6e: Students Manual
 Colin Drury

Publishing Director	Publisher
John Yates	Patrick Bond
Production Editor	Manufacturing Manager
Alissa Chappell	Helen Mason
Typesetter	Production Controller
Saxon Graphics, Derby	Maeve Healy

Copyright © 2006 Colin Drury

The Thomson logo is a registered trademark used herein under licence.

For more information, contact
Thomson Learning, High Holborn House; 50-51 Bedford Row, London WC1R 4LR or visit us on the World Wide Web at:
http://www.thomsonlearning.co.uk

This edition published 2006 by
Thomson Learning.

All rights reserved by Thomson Learning 2006. The text of this publication, or any part thereof, may not be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, storage in an information retrieval system, or otherwise, without prior permission of the publisher.

While the publisher has taken all reasonable care in the preparation of this book the publisher makes no representation, express or implied, with regard to the accuracy of the information contained in this book and cannot accept any legal responsibility or liability for any errors or omissions from the book or the consequences thereof.

Products and services that are referred to in this book may be either trademarks and/or registered trademarks of their respective owners. The publisher and author/s make no claim to these trademarks.

British Library Cataloguing-in-
Publication Data
A catalogue record for this book is available from the British Library

Contents

Part 1: Questions 1
An introduction to cost terms and concepts 3
Accounting for direct costs 5
Cost assignment for indirect costs 9
Accounting entries for a job costing system 14
Process costing 19
Joint and by-product costing 23
Income effects of alternative cost accumulation systems 27
Cost-volume-profit analysis 30
Cost estimation and cost behaviour 35
Measuring relevant costs and revenues for decision-making 37
The application of linear programming to management accounting 42
Activity-based costing 44
Decision-making under conditions of risk and uncertainty 47
Capital investment decisions 49
The budgeting process 52
Management control systems 55
Standard costing and variance analysis 61
Part 2: Solutions 65
An introduction to cost terms and concepts 67
Accounting for direct costs 70
Cost assignment for indirect costs 76
Accounting entries for a job costing system 82
Process costing 89
Joint and by-product costing 97
Income effects of alternative cost accumulation systems 102
Cost-volume-profit analysis 108
Cost estimation and cost behaviour 115
Measuring relevant costs and revenues for decision-making 117
The application of linear programming to management accounting 122
Activity-based costing 126
Decision-making under conditions of risk and uncertainty 131
Capital investment decisions 134
The budgeting process 138
Management control systems 142
Standard costing and variance analysis 148

Part I

Questions

An introduction to cost terms and concepts

(i) Costs may be classified in a number of ways including classification by behaviour, by function, by expense type, by controllability and by relevance.
(ii) Management accounting should assist in EACH of the planning, control and decision making processes in an organisation.

Discuss the ways in which relationships between statements (i) and (ii) are relevant in the design of an effective management accounting system.

> (15 marks)
> ACCA Information for Control and Decision Making
(a) 'Discretionary costs are troublesome because managers usually find it difficult to separate and quantify the results of their use in the business, as compared with variable and other fixed costs.'

You are required to discuss the above statement and include in your answer the meaning of discretionary costs, variable costs and fixed costs; give two illustrations of each of these three named costs.
(12 marks)
(b) A drug company has initiated a research project which is intended to develop a new product. Expenditures to date on this particular research total $£ 500000$ but it is now estimated that a further $£ 200000$ will need to be spent before the product can be marketed. Over the estimated life of the product the profit potential has a net present value of $£ 350000$.

You are required to advise management whether they should continue or abandon the project. Support your conclusion with a numerate statement and state what kind of cost is the $£ 500000$.
(5 marks)
(c) Opportunity costs and notional costs are not recognised by financial accounting systems but need to be considered in many decisions taken by management.

You are required to explain briefly the meanings of opportunity costs and notional costs; give two examples of each to illustrate the meanings you have attached to them.
(8 marks)
(Total 25 marks)
CIMA Stage 2 Cost Accounting
(a) Distinguish between 'opportunity cost' and 'out of pocket cost' giving a numerical example of each using your own figures to support your answer.
(6 marks)
(b) Jason travels to work by train to his 5-days a week job. Instead of buying daily tickets he finds it cheaper to buy a quarterly season ticket which costs $£ 188$ for 13 weeks.

Debbie, an acquaintance, who also makes the same journey, suggests that they both travel in Jason's car and offers to give him $£ 120$ each quarter towards his car expenses. Except for weekend travelling and using it for local college

Question SM 2.1
d

\qquad

Question SM 2.2

attendance near his home on three evenings each week to study for his CIMA Stage 2, the car remains in Jason's garage.

Jason estimates that using his car for work would involve him, each quarter, in the following expenses:

	$(\mathbf{(£)}$
Depreciation (proportion of annual figure)	200
Petrol and oil	128
Tyres and miscellaneous	52

You are required to state whether Jason should accept Debbie's offer and to draft a statement to show clearly the monetary effect of your conclusion.
(5 marks)
(c) A company with a financial year 1 September to 31 August prepared a sales budget which resulted in the following cost structure:
\% of sales

Direct materials		32
Direct wages	18	
Production overhead:	variable	6
	fixed	24
Administrative and selling costs:	variable	3
	fixed	7
Profit		10

After ten weeks, however, it became obvious that the sales budget was too optimistic and it has now been estimated that because of a reduction in sales volume, for the full year, sales will total $£ 2560000$ which is only 80% of the previously budgeted figure.

You are required to present a statement for management showing the amended sales and cost structure in $£$ s and percentages, in a marginal costing format.
(4 marks)
(Total 15 marks)
CIMA Stage 2 Cost Accounting

Accounting for direct costs

A company currently remunerates its factory workers on a time basis and is now considering the introduction of alternative methods of remuneration. The following information relates to two employees for one week:

	Y	Z
Hours worked	44	40
Rate of pay per hour	$£ 3.50$	$£ 4.50$
Units of output achieved	480	390

The time allowed for each unit of output is seven standard minutes. For purposes of piecework calculations each minute is valued at $£ 0.05$.
Required:
(a) Calculate the earnings of each employee where earnings are based on:
(i) piecework rates with earnings guaranteed at 80% of pay calculated on an hourly basis; (4 marks)
(ii) premium bonus scheme in which bonus (based on 75% of time saved) is added to pay calculated on an hourly basis.
(3 marks)
(b) Describe two situations in which the time basis of remuneration is likely to be more appropriate than piecework schemes.
(4 marks)
(Total 11 marks)
AAT Cost Accounting and Budgeting
(a) Describe the characteristics of factory direct and indirect labour cost and explain the treatment of factory overtime wages and holiday pay in cost accounting systems.
(9 marks)
(b) A Ltd makes engineering components. The company has been manufacturing 6000 components per week, with six direct employees working a 40-hour week, at a basic wage of $£ 4.00$ per hour. Each worker operates independently.

A new remuneration scheme is being introduced. Each employee will receive payment on the following basis:
first 800 components per week - 16 pence per unit
next $200 \quad 17$
all additional
18
There will be a guaranteed minimum wage of $£ 140$ per week. It is expected that output will increase to 6600 components per week with the new scheme.
Required:
Describe the general features of time-based and individual-performance-based remuneration systems, and outline the relative merits of each type of system. (Use the above figures to illustrate your discussion, making whatever additional assumptions that you feel are necessary.)
(16 marks)
(Total 25 marks)
ACCA Level 1 Costing

Question SM 3.1 Calculation of earnings

Question SM 3.2 Calculation of earnings and a discussion of time-based and individual performancebased remuneration systems

Question SM 3.3 X Ltd has an average of 42 workers employed in one of its factories in a period durCalculation of labour turnover and efficiency ratio ing which 7 workers left and were replaced.

The company pays a basic rate of $£ 4.60$ per hour to all its direct personnel. This is used as the standard rate. In addition, a factory-wide bonus scheme is in operation. A bonus of half of the efficiency ratio in excess of 100% is added as a percentage to the basic hourly rate, e.g. if the efficiency ratio is 110% then the hourly rate is $£ 4.83$ (i.e. $£ 4.60+(£ 4.60 \times 5 \%)$).

During the period 114268 units of the company's single product were manufactured in 4900 hours. The standard hour is 22 units.
Required:
(a) Calculate the labour turnover percentage for the period.
(3 marks)
(b) Identify the reasons for, and cost of, labour turnover, and discuss how it may be reduced
(12 marks)
(c) Calculate the hourly wage rate paid for the period, and the total labour variance.
(10 marks)
(Total 25 marks)
ACAA Cost and Management Accounting I

Question SM 3.4
 Computation of earnings and analysis by direct and indirect categories

(a) Explain how the following cost items, relating to direct personnel, would be processed in a manufacturing business's cost accounts:
(i) idle time;
(3 marks)
(ii) overtime.
(3 marks)
(b) The following information is available regarding the labour costs in a factory department for a week:

Direct personnel Indirect personnel

Payroll hours:		
\quad Production	432	117
Training	24	-
Idle time	32	4
Total	488	121
Rates per hour:		
Basic	$£ 7.50$	$£ 6.00$
Overtime premium	$£ 2.50$	$£ 2.00$

The following additional information is provided:
(i) There are 12 direct personnel and 3 indirect personnel in the department.
(ii) Group bonuses for the week, shared by all workers in the department, total $£ 520$.
(iii) The basic wage rates apply to a normal working week of 37 hours.
(iv) Overtime is worked in order to meet the general requirements of production.
(v) The idle time and the time spent training during the week are regarded as normal.
(vi) The expected number of payroll hours of direct personnel in the week (excluding time spent training), required to produce the output achieved, is 470 .
Required:
(i) Calculate the total amounts paid in the week (before share of group bonus) to direct personnel and indirect personnel respectively.
(4 marks)
(ii) Determine the total amounts to be charged as direct wages and indirect wages respectively.
(5 marks)
(iii) Complete the Wages Control Account in the company's separate cost accounting system, clearly indicating the account in which each corresponding entry would be made.
(3 marks)
(iv) Calculate the efficiency ratio relating to the direct personnel (expressed as a percentage to one decimal place).
(2 marks)
(Total 20 marks)
ACCA Management Information - Paper 3
On 1 January Mr G started a small business selling a special yarn. He invested his savings of $£ 40000$ in the business and during the next six months the following

Question SM 3.5
Stores pricing transactions occurred

Date of	Yarn purchases quantity (box)	Total cost $(£)$	Date of despatch	Yarn sales (box)	Total value $(£)$
13 Jan	200	7200	10 Feb	500	25000
8 Feb	400	15200			
11 Mar	600	24000	20 Apr	600	27000
12 Apr	400	14000			2500
15 June	500	14000	25 June	400	15200

The yarn is stored in premises Mr G has rented, and the closing stock of yarn, counted on 30 June, was 500 boxes.

Other expenses incurred, and paid in cash, during the six-month period amounted to $£ 2300$.
Required:
(a) Calculate the value of the material issues during the six-month period, and the value of the closing stock at the end of June, using the following methods of pricing:
(i) first in, first out;
(ii) last in, last out;
(iii) weighted average (calculations to two decimal places only).
(10 marks)
(b) Calculate and discuss the effect each of the three methods of material pricing will have on the reported profit of the business, and examine the performance of the business during the first six-month period.
(12 marks)
(Total 22 marks)
ACCA Level 1 Costing
(a) Write short notes to explain each of the following in the context of materials

Question SM 3.6 control:
(i) Continuous stocktaking.
(ii) Perpetual inventory system.
(iii) ABC inventory analysis.
(9 marks)
(b) State the factors that should influence the decision regarding economic order quantities of raw materials.
(7 marks)
(c) Calculate three normal control levels, which may be used in stock control systems, from the following information for a particular raw material:

Economic order quantity, 12000 kilos
Lead time, 10 to 14 working days
Average usage, 600 kilos per day
Minimum usage, 400 kilos per day
Maximum usage, 800 kilos per day (9 marks)
(Total 25 marks)
ACCA Level 1 Costing

Question SM 3.7 A large local government authority places orders for various stationery items at

Economic order quantity
quarterly intervals.

In respect of an item of stock coded A32, data are: annual usage quantity 5000 boxes minimum order quantity 500 boxes cost per box £2

Usage of material is on a regular basis and on average, half of the amount purchased is held in inventory. The cost of storage is considered to be 25% of the inventory value. The average cost of placing an order is estimated at $£ 12.50$.

The chief executive of the authority has asked you to review the present situation and to consider possible ways of effecting cost savings. You are required to:
(a) tabulate the costs of storage and ordering item A32 for each level of orders from four to twelve placed per year;
(b) ascertain from the tabulation the number of orders which should be placed in a year to minimize these costs;
(c) produce a formula to calculate the order level which would minimize these costs - your answer should explain each constituent part of the formula and their relationships;
(d) give an example of the use of the formula to confirm the calculation in (b) above;
(e) calculate the percentage saving on the annual cost which could be made by using the economic order quantity system;
(f) suggest two other approaches which could be introduced in order to reduce the present cost of storage and ordering of stationery.
(25 marks)
CIMA Cost Accounting 2

Question SM 3.8 Calculation of optimum order size

A company is reviewing its stock policy, and has the following alternatives available for the evaluation of stock number 12789 :
(i) Purchase stock twice monthly, 100 units
(ii) Purchase monthly, 200 units
(iii) Purchase every three months, 600 units
(iv) Purchase six monthly, 1200 units
(v) Purchase annually, 2400 units.

It is ascertained that the purchase price per unit is $£ 0.80$ for deliveries up to 500 units. A 5\% discount is offered by the supplier on the whole order where deliveries are 501 up to 1000, and 10% reduction on the total order for deliveries in excess of 1000.

Each purchase order incurs administration costs of $£ 5$.
Storage, interest on capital and other costs are $£ 0.25$ per unit of average stock quantity held.

You are required to advise management on the optimum order size.

Cost assignment for indirect costs

Knowing that you are studying for the CIMA qualification, a friend who manages a small business has sought your advice about how to produce quotations in response to the enquiries which her business receives. Her business is sheet metal fabrication - supplying ducting for dust extraction and air conditioning installations. She believes that she has lost orders recently through the use of a job cost estimating system which was introduced, on the advice of her auditors, seven years ago. You are invited to review this system.
Upon investigation, you find that a plant-wide percentage of 125% is added to prime costs in order to arrive at a selling price. The percentage added is intended to cover all overheads for the three production departments (Departments P, Q and R), all the selling, distribution and administration costs, and the profit.
You also discover that the selling, distribution and administration costs equate to roughly 20% of total production costs, and that to achieve the desired return on capital employed, a margin of 20% of sales value is necessary.
You recommend an analysis of overhead cost items be undertaken with the objective of determining a direct labour hour rate of overhead absorption for each of the three departments work passes through. (You think about activity-based costing but feel this would be too sophisticated and difficult to introduce at the present time.)

There are 50 direct workers in the business plus 5 indirect production people.
From the books, records and some measuring, you ascertain the following information which will enable you to compile an overhead analysis spreadsheet, and to determine overhead absorption rates per direct labour hour for departmental overhead purposes:

Cost/expense	Annual amount	Basis for apportionment where allocation not given
Repairs and maintenance	62000	
	40000	Technical assessment:
Pepreciation	Cost of plant and equipment	
Consumable supplies	9000	Direct labour hours
Wage-related costs	87000	12.5\% of direct wages costs
Indirect labour	90000	Direct labour hours
Canteen/rest/smoke room	30000	Number of direct workers
Business rates and insurance	26000	Floor area

Question SM 4.1
 Overhead analysis, calculation of overhead rates and a product cost

Other estimates/information

	Department	Department	Department
	P	Q	R
Estimated direct labour hours	50000	30000	20000
Direct wages costs	$£ 386000$	$£ 210000$	$£ 100000$
Number of direct workers	25	15	10
Floor area in square metres	5000	4000	1000
Plant and equipment, at cost	$£ 170000$	$£ 140000$	$£ 90000$

Required:
(a) Calculate the overhead absorption rates for each department, based on direct labour hours.
(9 marks)
(b) Prepare a sample quotation for Job 976, utilising information given in the question, your answer to (a) above, and the following additional information:
Estimated direct material cost:
$£ 800$
Estimated direct labour hours:
30 in Department P 10 in Department Q 5 in Department R
(c) Calculate what would have been quoted for Job 976 under the 'auditors' system' and comment on whether your friend's suspicions about lost business could be correct.
(3 marks)
(Total 15 marks)
CIMA Stage 2 Cost Accounting

Question SM 4.2 Calculation of overhead rates and a product cost

DC Limited is an engineering company which uses job costing to attribute costs to individual products and services provided to its customers. It has commenced the preparation of its fixed production overhead cost budget for 2001 and has identified the following costs:
(£000)

Machining	600
Assembly	250
Finishing	150
Stores	100
Maintenance	$\underline{80}$
	$\underline{1180}$

The stores and maintenance departments are production service departments. An analysis of the services they provide indicates that their costs should be apportioned accordingly:

	Machining	Assembly	Finishing	Stores	Maintenance
Stores	40%	30%	20%	-	10%
Maintenance	55%	20%	20%	5%	-

The number of machine and labour hours budgeted for 2001 is:

	Machining	Assembly	Finishing
Machine hours	50000	4000	5000
Labour hours	10000	30000	20000

Requirements:
(a) Calculate appropriate overhead absorption rates for each production department for 2001.
(9 marks)
(b) Prepare a quotation for job number XX34, which is to be commenced early in 2001, assuming that it has:

Direct materials	costing $£ 2400$
Direct labour	costing $£ 1500$
and requires:	

	Machine hours	Labour hours
Machining department	45	10
Assembly department	5	15
Finishing department	4	12

and that profit is 20% of selling price.
(5 marks)
(c) Assume that in 2001 the actual fixed overhead cost of the assembly department totals $£ 300000$ and that the actual machine hours were 4200 and actual labour hours were 30700 .

Prepare the fixed production overhead control account for the assembly department, showing clearly the causes of any over-/under-absorption. (5 marks)
(d) Explain how activity based costing would be used in organisations like DC Limited.
(6 marks)
(Total marks 25)
CIMA Stage 2 Operational Cost Accounting
A manufacturing company has two production cost centres (Departments A and B) and one service cost centre (Department C) in its factory.
A predetermined overhead absorption rate (to two decimal places of $£$) is established for each of the production cost centres on the basis of budgeted overheads and budgeted machine hours.

The overheads of each production cost centre comprise directly allocated costs and a share of the costs of the service cost centre.

Budgeted production overhead data for a period is as follows:

	Department A	Department B	Department C
Allocated costs	$£ 217860$	$£ 374450$	$£ 103970$
Apportioned costs	$£ 45150$	$£ 58820$	$(£ 103970)$
Machine hours	13730	16110	
Direct labour hours	16360	27390	

Actual production overhead costs and activity for the same period are:

	Department A	Department B	Department C
Allocated costs	$£ 219917$	$£ 387181$	$£ 103254$
Machine hours	13672	16953	
Direct labour hours	16402	27568	

70% of the actual costs of Department C are to be apportioned to production cost centres on the basis of actual machine hours worked and the remainder on the basis of actual direct labour hours.

Required:
(a) Establish the production overhead absorption rates for the period. (3 marks)
(b) Determine the under- or over-absorption of production overhead for the period in each production cost centre. (Show workings clearly.) (12 marks)
(c) Explain when, and how, the repeated distribution method may be applied in the overhead apportionment process.
(5 marks)
(Total 20 marks)
ACCA Management Information - Paper 3

Question SM 4.4 Analysis of under/ over recovery of overheads and a discussion of blanket versus department overheads
(a) One of the factories in the XYZ Group of companies absorbs fixed production overheads into product cost using a predetermined machine hour rate.

In Year 1, machine hours budgeted were 132500 and the absorption rate for fixed production overheads was $£ 18.20$ per machine hour. Overheads absorbed and incurred were $£ 2442440$ and $£ 2317461$ respectively.

In Year 2, machine hours were budgeted to be 5% higher than those actually worked in Year 1. Budgeted and actual fixed production overhead expenditure were $£ 2620926$ and $£ 2695721$ respectively, and actual machine hours were 139260.

Required:
Analyse, in as much detail as possible, the under-/over-absorption of fixed production overhead occurring in Years 1 and 2, and the change in absorption rate between the two years.
(15 marks)
(b) Contrast the use of
(i) blanket as opposed to departmental overhead absorption rates;
(ii) predetermined overhead absorption rates as opposed to rates calculated from actual activity and expenditure. (10 marks)
(Total 25 marks)
ACCA Cost and Management Accounting 1

> Question SM 4.5 Calculation of fixed and variable overhead rates, normal activity level and under/overrecovery of overheads
(a) C Ltd is a manufacturing company. In one of the production departments in its main factory a machine hour rate is used for absorbing production overhead. This is established as a predetermined rate, based on normal activity. The rate that will be used for the period which is just commencing is $£ 15.00$ per machine hour. Overhead expenditure anticipated, at a range of activity levels, is as follows:

Activity level (machine hours)	$(£)$
1500	25650
1650	26325
2000	27900

Required:
Calculate:
(i) the variable overhead rate per machine hour;
(ii) the total budgeted fixed overhead;
(iii) the normal activity level of the department; and
(iv) the extent of over-/under-absorption if actual machine hours are 1700 and expenditure is as budgeted.
(10 marks)
(b) In another of its factories, C Ltd carries out jobs to customers' specifications. A particular job requires the following machine hours and direct labour hours in the two production departments:

	Machining Department	Finishing Department
Direct labour hours	25	28
Machine hours	46	8

Direct labour in both departments is paid at a basic rate of $£ 4.00$ per hour. 10% of the direct labour hours in the finishing department are overtime hours, paid at 125% of basic rate. Overtime premiums are charged to production overhead.

The job requires the manufacture of 189 components. Each component requires 1.1 kilos of prepared material. Loss on preparation is 10% of unprepared material, which costs $£ 2.35$ per kilo.

Overhead absorption rates are to be established from the following data:
Machining

Department | Finishing |
| :---: |
| Department |

Production overhead	$£ 35280$	$£ 12480$
Direct labour hours	3500	7800
Machine hours	11200	2100

Required:

(i) Calculate the overhead absorption rate for each department and justify the absorption method used.
(ii) Calculate the cost of the job.

A company reapportions the costs incurred by two service cost centres, materials handling and inspection, to the three production cost centres of machining, finishing and assembly.
The following are the overhead costs which have been allocated and apportioned to the five cost centres:

	$(£ 000)$
Machining	400
Finishing	200
Assembly	100
Materials handling	100
Inspection	50

Estimates of the benefits received by each cost centre are as follows:

	Machining $\%$	Finishing $\%$	Assembly $\%$	Materials handling $\%$	Inspection $\%$
Materials handling	30	25	35	-	10
Inspection	20	30	45	5	-

You are required to:
(a) calculate the charge for overhead to each of the three production cost centres, including the amounts reapportioned from the two service centres, using:
(i) the continuous allotment (or repeated distribution) method;
(ii) an algebraic method;
(15 marks)
(b) comment on whether reapportioning service cost centre costs is generally worthwhile and suggest an alternative treatment for such costs;
(4 marks)
(c) discuss the following statement: 'Some writers advocate that an under- or over-absorption of overhead should be apportioned between the cost of goods sold in the period to which it relates and to closing stocks. However, the United Kingdom practice is to treat under- or over-absorption of overhead as a period cost.'

Accounting entries for a job costing system

Question SM 5.1 Set out below are incomplete cost accounts for a period for a manufacturing business: Integrated accounts and computation of the net profit

Note

1. Raw materials:

Issues of materials from stores for the period:
Material Y: 1164 kg (issued at a periodic weighted average price, calculated to two decimal places of $£$). Other materials: $£ 78520$.
No indirect materials are held on the Stores ledger.
Transactions for Material Y in the period:
Opening stock: $540 \mathrm{~kg}, £ 7663$
Purchases: 1100 kg purchased at $£ 14.40$ per kg
2. Payroll:

	Direct workers	Indirect workers
Hours worked:	11140	4250
\quad Basic time	1075	405
Overtime	11664	
\quad Productive time - direct workers	7.50	5.70
Basic hourly rate $(£)$		

Overtime, which is paid at basic rate plus one third, is regularly worked to meet production targets.
3. Production overheads:

The business uses a marginal costing system. 60% of production overheads are fixed costs. Variable production overhead costs are absorbed at a rate of 70% of actual direct labour.
4. Finished goods:

There is no work in progress at the beginning or end of the period, and a Work in Progress Account is not kept. Direct materials issued, direct labour and production overheads absorbed are transferred to the Finished Goods Control Account.
Required:
(a) Complete the above four accounts for the period, by listing the missing amounts and descriptions.
(13 marks)
(b) Provide an analysis of the indirect labour for the period.
(3 marks)
(c) Calculate the contribution and the net profit for the period, based on the cost accounts prepared in (a) and using the following additional information:

Sales	$£ 479462$
Selling and administration overheads:	
\quad variable	$£ 38575$
\quad fixed	$£ 74360$

(4 marks)
(Total 20 marks)
ACCA Management Information - Paper 3
A company manufactures two products (A and B). In the period just ended production and sales of the two products were:

	Product A (000 units)	Product B (000 units)
Production	41	27
Sales	38	28

The selling prices of the products were $£ 35$ and $£ 39$ per unit for A and B respectively.

Opening stocks were:
Raw materials
Finished goods:
Product A $£ 80640$ (3200 units)
Product B $£ 102920$ (3100 units)
Raw material purchases (on credit) during the period totalled $£ 631$ 220. Raw material costs per unit are $£ 7.20$ for Product A and $£ 11.60$ for Product B.

Direct labour hours worked during the period totalled 73400 (1 hour per unit of Product A and 1.2 hours per unit of Product B), paid at a basic rate of $£ 8.00$ per hour. 3250 overtime hours were worked by direct workers, paid at a premium of 25% over the basic rate. Overtime premiums are treated as indirect production costs. Other indirect labour costs during the period totalled $£ 186470$ and production overhead costs (other than indirect labour) were $£ 549$ 630. Production overheads are absorbed at a rate of $£ 10.00$ per direct labour hour (including $£ 6.80$ per hour for fixed production overheads). Any over-/under-absorbed balances are transferred to the Profit and Loss Account in the period in which they arise. Non-production overheads totalled $£ 394700$ in the period.
Required:
(a) Prepare the following accounts for the period in the company's integrated accounting system:
(i) Raw material stock control;
(ii) Production overhead control;
(iii) Finished goods stock control (showing the details of the valuation of closing stocks as a note).
(12 marks)
(b) Prepare the Profit and Loss Account for the period, clearly showing sales, production cost of sales and gross profit for each product.
(4 marks)
(c) Calculate, and explain, the difference in the net profit (loss) for the period if the marginal costing method is employed.
(4 marks)
(Total 20 marks)
ACCA Management Information - Paper 3

Question SM 5.3 Computation of contract profit

A company has been carrying out work on a number of building contracts (including Contract $A B C$) over the six-month period ended 31 May 2002. The following information is available:

	All contracts (including ABC)	Contract ABC
Number of contracts worked on in the six months to 31.5.02	10	-
Value	$£ 76.2$ m	$£ 6.4$ m
Duration	8-22 months (average 13 months)	11 months
Contract months	53^{1}	6
Direct labour costs in the period	$£ 9.762 \mathrm{~m}$	$£ 1.017 \mathrm{~m}$
Raw material costs in the period	$£ 10.817$ m	$£ 1.456$ m
Distance from base	16 kilometres (average)	23 kilometres
Value of work certified at 31.5.02	-	$£ 5.180 \mathrm{~m}$
Note: ${ }^{1}$ Contract months for 'All Contracts' are th contract during the six-month period.	of the number of months' wo	each individual

Contract ABC commenced on 1 September 2001. As at 30 November 2001 cumulative costs on the contract, held in work-in-progress, totalled $£ 1.063 \mathrm{~m}$ (including overheads).

The company confidently predicts that further cost after 31 May 2002 to complete Contract ABC on time (including overheads) will not exceed $£ 0.937 \mathrm{~m}$. Overheads incurred over the six-month period to 31 May 2002, which are to be apportioned to individual contracts are:

	$£ \mathbf{m}$
Stores operations	1.56
Contract general management	1.22
Transport	1.37
General administration	4.25

The bases of apportionment are:
Stores operations

- contract value \times contract months

Contract general management

- direct labour costs

Transport

- distance from base \times contract months

General administration

- contract months

Required:
(a) (i) Apportion overheads to Contract ABC for the six-month period to 31 May 2002 (to the nearest $£ 000$ for each overhead item).
(6 marks)
(ii) Determine the expected profit/loss on Contract ABC , and the amount of profit/loss on the contract that you recommend be included in the accounts of the company for the six-month period to 31 May 2002.
(7 marks)
(b) The company is introducing a service costing system into its stores operations department.

Outline the key factors to consider when introducing the service costing system.
(7 marks)
(Total 20 marks)
ACCA Management Information - Paper 3
A construction company is currently undertaking three separate contracts and
Question SM 5.4 information relating to these contracts for the previous year, together with other Contract costing relevant data, is shown below.

	$\begin{aligned} & \text { Contract } \\ & \text { MNO } \\ & (000) \end{aligned}$	$\begin{aligned} & \text { Contract } \\ & \text { PQR } \\ & (000) \end{aligned}$	$\begin{aligned} & \text { Contract } \\ & \text { STU } \\ & (000) \end{aligned}$	Construction services dept overhead (000s)
Contract price	800	675	1100	
Balances brought forward at beginning of year:				
Cost of work completed	-	190	370	-
Material on site	-	-	25	-
Written-down value of plant and machinery	-	35	170	12
Wages accrued	-	2	-	-
Profit previously transferred to profit/loss a/c	-	-	15	-
Transactions during year:				
Material delivered to site	40	99	180	-
Wages paid	20	47	110	8
Payments to subcontractors	-	-	35	-
Salaries and other costs	6	20	25	21
Written down value of plant: issued to sites transferred from sites	90	$\begin{array}{r} 15 \\ 8 \end{array}$	-	-
Balances carried forward at the end of year:				
Material on site	8	-	-	-
Written-down value of plant and machinery	70	-	110	5
Wages accrued	-	5	-	-
Pre-payments to subcontractors	-	-	15	-
Value of work certified at end of year	90	390	950	-
Cost of work not certified at end of year	-	-	26	-

The cost of operating the construction services department, which provides technical advice to each of the contracts, is apportioned over the contracts in proportion to wages incurred. Contract STU is scheduled for handing over to the contractee in the near future and the site engineer estimates that the extra costs required to complete the contract in addition to those tabulated above, will total $£ 138000$. This amount includes an allowance for plant depreciation, construction services and for contingencies.

Required:
(a) Construct a cost account for each of the three contracts for the previous year and show the cost of the work completed at the year end.
(9 marks)
(b) (i) Recommend how much profit or loss should be taken, for each contract, for the previous year. (7 marks)
(ii) Explain the reasons for each of your recommendations in (b) (i) above.

Process costing

A chemical compound is made by raw material being processed through two processes. The output of Process A is passed to Process B where further material is added to the mix. The details of the process costs for the financial period number 10 were as shown below:

Process A

Direct material	2000 kilograms at 5 per kg
Direct labour	$£ 7200$
Process plant time	140 hours at $£ 60$ per hour

Process B

Direct material	1400 kilograms at $£ 12$ per kg
Direct labour	$£ 4200$
Process plant time	80 hours at $£ 72.50$ per hour

The departmental overhead for Period 10 was $£ 6840$ and is absorbed into the costs of each process on direct labour cost.

Process A Process B

Expected output was	80% of input	90% of input
Actual output was	1400 kg	2620 kg

Assume no finished stock at the beginning of the period and no work in progress at either the beginning or the end of the period.
Normal loss is contaminated material which is sold as scrap for $£ 0.50$ per kg from Process A and $£ 1.825$ per kg from Process B, for both of which immediate payment is received.

You are required to prepare the accounts for Period 10, for
(i) Process A,
(ii) Process B,
(iii) Normal loss/gain,
(iv) Abnormal loss/gain,
(v) Finished goods,
(vi) Profit and loss (extract).
(15 marks)
CIMA Stage 2 Cost Accounting
A firm operates a process, the details of which for the period were as follows. There was no opening work-in-progress. During the period 8250 units were received from the previous process at a value of $£ 453750$, labour and overheads were $£ 350060$ and material introduced was $£ 24750$. At the end of the period the closing work-in-progress was 1600 units, which were 100% complete in respect of materials, and 60% complete in respect of labour and overheads. The balance of units were transferred to finished goods.

Question SM 6.1 Preparation of process accounts with all output fully completed

Question SM 6.2
Equivalent production and no losses

Requirements:
(a) Calculate the number of equivalent units produced.
(3 marks)
(b) Calculate the cost per equivalent unit.
(2 marks)
(c) Prepare the process account.
(7 marks)
(d) Distinguish between joint products and by-products, and briefly explain the difference in accounting treatment between them.
(3 marks)
(Total 15 marks)
CIMA Stage 1 Cost Accounting and Quantitative Methods
Question SM 6.3 A company manufactures a product that requires two separate processes for its Losses in process
(weighted average)

The following information is available for Process 2 for a period:
(i) Opening work-in-progress units:

12000 units: 90% complete as to materials, 50% complete as to conversion costs.
(ii) Opening work-in-progress value:

Process 1 output: $£ 13440$
Process 2 materials added: $£ 4970$
Conversion costs: $£ 3120$.
(iii) Costs incurred during the period:

Process 1 output: $£ 107790$ (95000 units)
Process 2 materials added: $£ 44000$
Conversion costs: $£ 51480$.
(iv) Closing work-in-progress units

10000 units: 90% complete as to materials, 70% complete as to conversion costs.
(v) The product is inspected when it is complete. 200 units of finished product were rejected during the period, in line with the normal allowance. Units rejected have no disposal value.

Required:
(a) Calculate the unit cost of production for the period in Process 2 (to three decimal places of $£$), using the periodic weighted average method. (7 marks)
(b) Prepare the Process 2 Account for the period using the unit cost of production calculated in (a) above.
(5 marks)
(c) Explain why, and how, the Process 2 Account would be different if there was no normal allowance for rejects. NB The process account should not be reworked.
(5 marks)
(d) Explain how the process account workings, required in (a) above to calculate the unit cost, would differ if the FIFO valuation method was used instead.
(3 marks)
(Total 20 marks)
ACCA Management Information - Paper 3
Question SM 6.4 Chemical Processors manufacture Wonderchem using two processes, mixing and Losses in process (weighted average)
distillation. The following details relate to the distillation process for a period
No opening work in progress (WIP)
Input from mixing $\quad 36000 \mathrm{~kg}$ at a cost of $£ 166000$
Labour for period $£ 43800$
Overheads for period £29200
Closing WIP of 8000 kg , which was 100% complete for materials and 50% complete for labour and overheads.

The normal loss in distillation is 10% of fully complete production. Actual loss in the period was 3600 kg , fully complete, which were scrapped.
Required:
(a) Calculate whether there was a normal or abnormal loss or abnormal gain for the period.
(2 marks)
(b) Prepare the distillation process account for the period, showing clearly weights and values.
(10 marks)
(c) Explain what changes would be required in the accounts if the scrapped production had a resale value, and give the accounting entries.
(3 marks)
(Total 15 marks)
CIMA Stage 1 Cost Accounting
(a) Z Ltd manufactures metal cans for use in the food processing industry. The metal is introduced in sheet form at the start of the process. Normal wastage in the form of offcuts is 2% of input. The offcuts can be sold for $£ 0.26$ per kilo. Each metal sheet weighs 2 kilos and is expected to yield 80 cans. In addition to wastage through offcuts, 1% of cans manufactured are expected to be rejected. These rejects can also be sold at $£ 0.26$ per kilo.
Production, and costs incurred, in the month just completed, were as follows: Production: 3100760 cans

Costs incurred:
Direct materials:
Direct labour and overhead:
39300 metal sheets at $£ 2.50$ per sheet £33 087

There was no opening or closing work in process.

Required:

Prepare the process accounts for the can manufacturing operation for the month just completed.
(15 marks)
(b) Another of the manufacturing operations of Z Ltd involves the continuous processing of raw materials with the result that, at the end of any period, there are partly completed units of product remaining.
Required:
With reference to the general situation outlined above
(i) explain the concept of equivalent units
(3 marks)
(ii) describe, and contrast, the FIFO and average methods of work in process valuation.
(Total 25 marks)
ACCA Level 1 Costing
The manufacture of one of the products of A Ltd requires three separate processes. In the last of the three processes, costs, production and stock for the month just ended were:
(1) Transfers from Process 2: 180000 units at a cost of $£ 394200$.
(2) Process 3 costs: materials $£ 110520$, conversion costs $£ 76506$.
(3) Work in process at the beginning of the month: 20000 units at a cost of $£ 55160$ (based on FIFO pricing method). Units were 70% complete for materials, and 40% complete for conversion costs.
(4) Work in process at the end of the month: 18000 units which were 90% complete for materials, and 70% complete for conversion costs.
(5) Product is inspected when it is complete. Normally no losses are expected but during the month 60 units were rejected and sold for $£ 1.50$ per unit.
Required:
(a) Prepare the Process 3 account for the month just ended.
(15 marks)
(b) Explain how, and why, your calculations would be affected if the 60 units lost were treated as normal losses.
(5 marks)
(c) Explain how your calculations would be affected by the use of weighted average pricing instead of FIFO.
(5 marks)
(Total 25 marks)
ACCA Cost and Management Accounting 1

Question SM 6.5
Preparation of process accounts with output fully completed and a discussion of FIFO and average methods of WIP valuation

Question SM 6.6 FIFO method and losses in process

Question SM 6.7 FIFO method and losses in process

A company operates several production processes involving the mixing of ingredients to produce bulk animal feedstuffs. One such product is mixed in two separate process operations. The information below is of the costs incurred in, and output from, Process 2 during the period just completed.

Costs incurred:	$£$
Transfers from Process 1	187704
Raw materials costs	47972
Conversion costs	63176
Opening work in process	3009
Production:	Units
Opening work in process	1200
\quad (100\% complete, apart from Process 2	
\quad conversion costs which were 50\% complete)	
Transfers from Process 1	112000
Completed output	105400
Closing work in process	1600
\quad (100\% complete, apart from Process 2	
conversion costs which were 75\% complete)	

Normal wastage of materials (including product transferred from Process 1), which occurs in the early stages of Process 2 (after all materials have been added), is expected to be 5% of input. Process 2 conversion costs are all apportioned to units of good output. Wastage materials have no saleable value.
Required:
(a) Prepare the Process 2 account for the period, using FIFO principles. (15 marks)
(b) Explain how, and why, your calculations would have been different if wastage occurred at the end of the process.
(5 marks)
(Total 20 marks)
ACCA Cost and Management Accounting

Joint and by-product costing

PQR Limited produces two joint products - P and Q - together with a by-product R, from a single main process (process 1). Product P is sold at the point of separation for $£ 5$ per kg, whereas product Q is sold for $£ 7$ per kg after further processing into product Q2. By-product R is sold without further processing for $£ 1.75$ per kg.

Process 1 is closely monitored by a team of chemists, who planned the output per 1000 kg of input materials to be as follows:

Product P	500 kg
Product Q	350 kg
Product R	100 kg
Toxic waste	50 kg

Question SM 7.1 Preparation of joint product account and a decision on further processing

The toxic waste is disposed of at a cost of $£ 1.50$ per kg , and arises at the end of processing.

Process 2, which is used for further processing of product Q into product Q 2, has the following cost structure:

Fixed costs	$£ 6000$ per week
Variable costs	$£ 1.50$ per kg processed

The following actual data relate to the first week of accounting period 10 :

Process 1

Opening work in process	Nil
Materials input 10000 kg costing	$£ 15000$
Direct labour	$£ 10000$
Variable overhead	$£ 4000$
Fixed overhead	$£ 6000$

Outputs:

Product P	4800 kg
Product Q	3600 kg
Product R	1000 kg
Toxic waste	600 kg
Closing work in progress	nil

Process 2

Opening work in process	nil
Input of product Q	3600 kg
Output of product Q2	3300 kg
Closing work in progress	300 kg,
	50% converted

Conversion costs were incurred in accordance with the planned cost structure.

Required:
(a) Prepare the main process account for the first week of period 10 using the final sales value method to attribute pre-separation costs to joint products. (12 marks)
(b) Prepare the toxic waste accounts and process 2 account for the first week of period 10.
(9 marks)
(c) Comment on the method used by PQR Limited to attribute pre-separation costs to its joint products.
(4 marks)
(d) Advise the management of PQR Limited whether or not, on purely financial grounds, it should continue to process product Q into product Q2:
(i) if product Q could be sold at the point of separation for $£ 4.30$ per kg ; and
(ii) if 60% of the weekly fixed costs of process 2 were avoided by not processing product Q further.
(Total 30 marks)
CIMA Stage 2 Operational Cost Accounting

Question SM 7.2 Flow chart and calculation of cost per unit for joint products

A distillation plant, which works continuously, processes 1000 tonnes of raw material each day. The raw material costs $£ 4$ per tonne and the plant operating costs per day are $£ 2600$. From the input of raw material the following output is produced:

(\%)

Distillate X	40
Distillate Y	30
Distillate Z	20
By-product B	10

From the initial distillation process, Distillate X passes through a heat process which costs $£ 1500$ per day and becomes product X which requires blending before sale.

Distillate Y goes through a second distillation process costing $£ 3300$ per day and produces 75% of product Y and 25% of product X1.

Distillate Z has a second distillation process costing $£ 2400$ per day and produces 60% of product Z and 40% of product X 2 . The three streams of products $\mathrm{X}, \mathrm{X} 1$ and X2 are blended, at a cost of $£ 1555$ per day to become the saleable final product XXX .

There is no loss of material from any of the processes.
By-product B is sold for $£ 3$ per tonne and such proceeds are credited to the process from which the by-product is derived.

Joint costs are apportioned on a physical unit basis.
You are required to:
(a) draw a flow chart, flowing from left to right, to show for one day of production the flow of material and the build up of the operating costs for each product;
(18 marks)
(b) present a statement for management showing for each of the products XXX, Y and Z, the output for one day, the total cost and the unit cost per tonne;
(5 marks)
(c) suggest an alternative method for the treatment of the income receivable for by-product B than that followed in this question (figures are not required).
(2 marks)
(Total 25 marks)
CIMA Stage 2 Cost Accounting

A chemical company carries on production operations in two processes. Materials first pass through process I, where a compound is produced. A loss in weight takes place at the start of processing. The following data, which can be assumed to be representative, relates to the month just ended:

Quantities (kg):	
Material input Opening work in process (half processed)	200000
Work completed Closing work in process (two-thirds processed)	160000
Costs (£):	30000
Material input	75000
Processing costs Opening work in process: Materials Processing costs	96000

Any quantity of the compound can be sold for $£ 1.60$ per kg. Alternatively, it can be transferred to process II for further processing and packing to be sold as Starcomp for $£ 2.00$ per kg. Further materials are added in process II such that for every kg of compound used, 2 kg of Starcomp result.

Of the 160000 kg per month of work completed in process I, 40000 kg are sold as compound and 120000 kg are passed through process II for sale as Starcomp. Process II has facilities to handle up to 160000 kg of compound per month if required. The monthly costs incurred in process II (other than the cost of the compound) are:

	$120000 ~ \mathbf{~ k g}$ of compound input	$\mathbf{1 6 0 0 0 0 ~ \mathbf { ~ k g }}$ of compound input
Materials $(£)$	120000	160000
Processing costs $(£)$	120000	140000

Required:
(a) Determine, using the average method, the cost per kg of compound in process I, and the value of both work completed and closing work in process for the month just ended.
(11 marks)
(b) Demonstrate that it is worth while further processing 120000 kg of compound.
(5 marks)
(c) Calculate the minimum acceptable selling price per kg , if a potential buyer could be found for the additional output of Starcomp that could be produced with the remaining compound.
(6 marks)
(Total 22 marks)
ACCA Level 1 Costing
C Ltd operates a process which produces three joint products. In the period just ended costs of production totalled $£ 509640$. Output from the process during the period was:

Product W	276000 kilos
Product X	334000 kilos
Product Y	134000 kilos

Question SM 7.4 Profitability analysis and a decision on further processing

There were no opening stocks of the three products. Products W and X are sold in this state. Product Y is subjected to further processing. Sales of Products W and X during the period were:

Product W	255000 kilos at $£ 0.945$ per kilo
Product X	312000 kilos at $£ 0.890$ per kilo

128000 kilos of Product Y were further processed during the period. The balance of the period production of the three products W, X and Y remained in stock at the end of the period. The value of closing stock of individual products is calculated by apportioning costs according to weight of output.

The additional costs in the period of further processing Product Y , which is converted into Product Z , were:

Direct labour	$£ 10850$
Production overhead	$£ 7070$

96000 kilos of Product Z were produced from the 128000 kilos of Product Y. A byproduct BP is also produced which can be sold for $£ 0.12$ per kilo. 8000 kilos of BP were produced and sold in the period.

Sales of Product Z during the period were 94000 kilos, with a total revenue of $£ 100$ 110. Opening stock of Product Z was 8000 kilos, valued at $£ 8640$. The FIFO method is used for pricing transfers of Product Z to cost of sales.

Selling and administration costs are charged to all main products when sold, at 10% of revenue.

Required:
(a) Prepare a profit and loss account for the period, identifying separately the profitability of each of the three main products.
(14 marks)
(b) C Ltd has now received an offer from another company to purchase the total output of Product Y (i.e. before further processing) for $£ 0.62$ per kilo. Calculate the viability of this alternative.
(5 marks)
(c) Discuss briefly the methods of, and rationale for, joint cost apportionment.
(6 marks)
(Total 25 marks)
ACCA Level 1 Cost and Management Accounting 1

Income effects of alternative cost accumulation systems

A company sells a single product at a price of $£ 14$ per unit. Variable manufacturing costs of the product are $£ 6.40$ per unit. Fixed manufacturing overheads, which are absorbed into the cost of production at a unit rate (based on normal activity of 20000 units per period), are $£ 92000$ per period. Any over- or under-absorbed fixed manufacturing overhead balances are transferred to the profit and loss account at the end of each period, in order to establish the manufacturing profit.

Sales and production (in units) for two periods are as follows:
Period 1 Period 2

Sales	15000	22000
Production	18000	21000

The manufacturing profit in Period 1 was reported as $£ 35800$.
Required:
(a) Prepare a trading statement to identify the manufacturing profit for Period 2 using the existing absorption costing method.
(7 marks)
(b) Determine the manufacturing profit that would be reported in Period 2 if marginal costing was used.
(c) Explain, with supporting calculations:
(i) the reasons for the change in manufacturing profit between Periods 1 and 2 where absorption costing is used in each period;
(5 marks)
(ii) why the manufacturing profit in (a) and (b) differs.
(Total 20 marks)
ACCA Management Information - Paper 3

R Limited is considering its plans for the year ending 31 December 2001. It makes and sells a single product, which has budgeted costs and selling price as follows:

	$£$ per
Selling price	45
Direct materials	11
Direct labour	
Production overhead:	8
\quad variable	4
\quad fixed	3
Selling overhead:	
\quadvariable \quad fixed	5
Administration overhead: \quad fixed	2
	3

Fixed overhead costs per unit are based on a normal annual activity level of 96000 units. These costs are expected to be incurred at a constant rate throughout the year.

Question SM 8.1
Preparation of variable and absorption costing profit statements and an explanation of the change in profits

Question SM 8.2
Preparation of variable and absorption costing profit statements and CVP analysis

Activity levels during January and February 2001 are expected to be:

	January units	February units
Sales	7000	8750
Production	8500	7750

Assume that there will be no stocks held on 1 January 2001.
Required:
(a) Prepare, in columnar format, profit statements for each of the two months of January and February 2001 using:
(i) absorption costing;
(ii) marginal costing.
(12 marks)
(b) Reconcile and explain the reasons for any differences between the marginal and absorption profits for each month which you have calculated in your answer to (a) above.
(3 marks)
(c) Based upon marginal costing, calculate:
(i) the annual breakeven sales value; and
(ii) the activity level, in units, which will yield an annual profit of $£ 122800$.
(6 marks)
(d) Explain 3 fundamental assumptions underpinning single product breakeven analysis.
(6 marks)
(Total 27 marks)
CIMA Stage 2 - Operational Cost Accounting

Question SM 8.3 Preparation of variable and absorption	The following budgeted pro principles:	ment	prepa to	ng ab	costing er
costing		(£000)	(£000)	(£000)	(£000)
reconciliation of	Sales		540		360
the profits	Opening stock	100		160	
	Production costs:				
	Direct materials	108		36	
	Direct labour	162		54	
	Overhead	90		30	
		460		280	
	Closing stock	$\underline{160}$		80	
			300		$\underline{200}$
	GROSS PROFIT		240		160
	Production overhead:				
	Selling costs	(12) 50		12 50	
	Distribution costs	45		40	
	Administration costs	80		80	
			163		182
	NET PROFIT/(LOSS)		$\underline{77}$		(22)
	Sales units				
	Production units				

The members of the management team are concerned by the significant change in profitability between the two six-month periods. As management accountant, you have analysed the data upon which the above budget statement has been produced, with the following results:

1. The production overhead cost comprises both a fixed and a variable element, the latter appears to be dependent on the number of units produced. The fixed element of the cost is expected to be incurred at a constant rate throughout the year.
2. The selling costs are fixed.
3. The distribution cost comprises both fixed and variable elements, the latter appears to be dependent on the number of units sold. The fixed element of the cost is expected to be incurred at a constant rate throughout the year.
4. The administration costs are fixed.

Required:
(a) Present the above budgeted profit statement in marginal costing format.
(10 marks)
(b) Reconcile EACH of the six-monthly profit/loss values reported respectively under marginal and absorption costing.
(4 marks)
(c) Reconcile the six-monthly profit for January to June from the absorption costing statement with the six-monthly loss for July to December from the absorption costing statement. (4 marks)
(d) Calculate the annual number of units required to break even. (3 marks)
(e) Explain briefly the advantages of using marginal costing as the basis of providing managers with information for decision making.
(4 marks)
(Total 25 marks)
CIMA Stage 2 Operational Cost Accounting
The following information relates to product J , for quarter 3, which has just ended:

	Production (units)	Sales (units)	Fixed overheads $(£ \mathbf{0 0 0})$	Variable costs $(£ 000)$
Budget	40000	38000	300	1800
Actual	46000	42000	318	2070

Question SM 8.4 Preparation of variable and absorption costing profit statements for FIFO and AVECO methods
The selling price of product J was $£ 72$ per unit.
The fixed overheads were absorbed at a predetermined rate per unit.
At the beginning of quarter 3 there was an opening stock of product J of 2000 units, valued at $£ 25$ per unit variable costs and $£ 5$ per unit fixed overheads.

Required:

(a) (i) Calculate the fixed overhead absorption rate per unit for the last quarter, and present profit statements using FIFO (first in, first out) using:
(ii) absorption costing;
(iii) marginal costing; and
(iv) reconcile and explain the difference between the profits or losses. (12 marks)
(b) Using the same data, present similar statements to those required in part (a). Using the AVECO (average cost) method of valuation, reconcile the profit or loss figures, and comment briefly on the variations between the profits or losses in (a) and (b).
(8 marks)
(Total 20 marks)
ACCA Paper 8 Managerial Finance

Cost-volume-profit analysis

Question SM 9.1 (a) From the following information you are required to construct: Break-even,
contribution and
profit-volume
graph
(i) a break-even chart, showing the break-even point and the margin of safety;
(ii) a chart displaying the contribution level and the profit level;
(iii) a profit-volume chart.

Sales	6000 units at
	$£ 12$ per unit $=£ 72000$
Variable costs	6000 units at
	$£ 7$ per unit $=£ 42000$
Fixed costs	= £20 000

(b) State the purposes of each of the three charts in (a) above. (6 marks)
(c) Outline the limitations of break-even analysis.
(d) What are the advantages of graphical presentation of financial data to executives?
(2 marks)
(Total 22 marks)
AAT
Question SM 9.2 A company produces and sells two products with the following costs: Profit-volume graph and changes in sales mix

	Product \mathbf{X}	Product Y
Variable costs (per $£$ of sales)	$£ 0.45$	$£ 0.6$
Fixed costs	$£ 1212000$	$£ 1212000$
	per period	

Total sales revenue is currently generated by the two products in the following proportions:

$$
\begin{array}{ll}
\text { Product X } & 70 \% \\
\text { Product Y } & 30 \%
\end{array}
$$

Required:
(a) Calculate the break-even sales revenue per period, based on the sales mix assumed above.
(6 marks)
(b) Prepare a profit-volume chart of the above situation for sales revenue up to $£ 4000000$. Show on the same chart the effect of a change in the sales mix to product $\mathrm{X} 50 \%$, product $\mathrm{Y} 50 \%$. Clearly indicate on the chart the break-even point for each situation.
(11 marks)
(c) Of the fixed costs $£ 455000$ are attributable to product X. Calculate the sales revenue required on product X in order to recover the attributable fixed costs and provide a net contribution of $£ 700000$ towards general fixed costs and profit.
(5 marks)
(Total 22 marks)
ACCA Level 1 Costing

M Ltd manufactures three products which have the following revenue and costs ($£$ per unit).

	Product 1	$\mathbf{2}$	$\mathbf{3}$
Selling price	2.92	1.35	2.83
Variable costs	1.61	0.72	0.96
Fixed costs: \quadProduct-specific 0.49 0.35 \quad General 0.46 0.46 0.62			

Unit fixed costs are based upon the following annual sales and production volumes (thousand units):

Product 1	$\mathbf{2}$	$\mathbf{3}$
98.2	42.1	111.8

Required:
(a) Calculate:
(i) the break-even point sales (to the nearest $£$ hundred) of M Ltd based on the current product mix;
(9 marks)
(ii) the number of units of Product 2 (to the nearest hundred) at the breakeven point determined in (i) above; (3 marks)
(b) Comment upon the viability of Product 2.
(8 marks)
(Total 20 marks)
ACCA Cost and Management Accounting 1
You are employed as an accounting technician by Smith, Williams and Jones, a small firm of accountants and registered auditors. One of your clients is Winter plc, a large department store. Judith Howarth, the purchasing director for Winter plc, has gained considerable knowledge about bedding and soft furnishings and is considering acquiring her own business.
She has recently written to you requesting a meeting to discuss the possible purchase of Brita Beds Ltd. Brita Beds has one outlet in Mytown, a small town 100 miles from where Judith works. Enclosed with her letter was Brita Beds' latest profit and loss account. This is reproduced below.

Brita Beds Ltd Profit and loss account - year to 31 May Sales	(units)	$(£)$
Model A	1620	336960
Model B	2160	758160
Model C	1620	1010880
Turnover		2106000
Expenses	$(£)$	
Cost of beds	1620000	
Commission	210600	
Transport	216000	
Rates and insurance	8450	
Light heat and power	10000	
Assistants' salaries	40000	
Manager's salary	40000	$\underline{2145050}$
Loss for year		39050

Question SM 9.3
Calculation of break-even points based on different sales mix assumptions and a product abandonment decision

Also included in the letter was the following information:

1. Brita Beds sells three types of bed, models A to C inclusive.
2. Selling prices are determined by adding 30% to the cost of beds.
3. Sales assistants receive a commission of 10% of the selling price for each bed sold.
4. The beds are delivered in consignments of 10 beds at a cost of $£ 400$ per delivery. This expense is shown as 'Transport' in the profit and loss account.
5. All other expenses are annual amounts.
6. The mix of models sold is likely to remain constant irrespective of overall sales volume.

Task 1
In preparation for your meeting with Judith Howarth, you are asked to calculate:
(a) the minimum number of beds to be sold if Brita Beds is to avoid making a loss;
(b) the minimum turnover required if Brita Beds it to avoid making a loss.

At the meeting, Judith Howarth provides you with further information:

1. The purchase price of the business is $£ 300000$.
2. Judith has savings of $£ 300000$ currently earning 5% interest per annum, which she can use to acquire Beta Beds.
3. Her current salary is $£ 36550$.

To reduce costs, Judith suggests that she should take over the role of manager as the current one is about to retire. However, she does not want to take a reduction in income. Judith also tells you that she has been carrying out some market research. The results of this are as follows:

1. The number of households in Mytown is currently 44880 .
2. Brita Beds Ltd is the only outlet selling beds in Mytown.
3. According to a recent survey, 10% of households change their beds every 9 years, 60% every 10 years and 30% every 11 years.
4. The survey also suggested that there is an average of 2.1 beds per household.

Task 2
Write a letter to Judith Howarth. Your letter should:
(a) identify the profit required to compensate for the loss of salary and interest;
(b) show the number of beds to be sold to achieve that profit;
(c) calculate the likely maximum number of beds that Brita Beds would sell in a year;
(d) use your answers in (a) to (c) to justify whether or not Judith Howarth should purchase the company and become its manager;
(e) give two possible reasons why your estimate of the maximum annual sales volume may prove inaccurate.
On receiving your letter, Judith Howarth decides she would prefer to remain as the purchasing director for Winter plc rather than acquire Brita Beds Ltd. Shortly afterwards, you receive a telephone call from her. Judith explains that Winter plc is redeveloping its premises and that she is concerned about the appropriate sales policy for Winter's bed department while the redevelopment takes place. Although she has a statement of unit profitability, this had been prepared before the start of the redevelopment and had assumed that there would be in excess of 800 square metres of storage space available to the bed department. Storage space is critical as customers demand immediate delivery and are not prepared to wait until the new stock arrives.

The next day, Judith Howarth sends you a letter containing a copy of the original statement of profitability. This is reproduced below:

Model	A	B	C
Monthly demand	35	45	20
(beds)	(£)	(£)	(£)
Unit selling price	240.00	448.00	672.00
Unit cost per bed	130.00	310.00	550.00
Carriage inwards	20.00	20.00	20.00
Staff costs	21.60	40.32	60.48
Department fixed overheads	20.00	20.00	20.00
General fixed overheads	25.20	25.20	25.20
Unit profit	23.20	32.48	(3.68)
Storage required per bed (square metres)	3	4	5

In her letter she asks for your help in preparing a marketing plan which will maximize the profitability of Winter's bed department while the redevelopment takes place. To help you, she has provided you with the following additional information:
1 Currently storage space available totals 300 square metres.
2 Staff costs represent the salaries of the sales staff in the bed department. Their total cost of $£ 3780$ per month is apportioned to units on the basis of planned turnover.
3 Departmental fixed overhead of $£ 2000$ per month is directly attributable to the department and is apportioned on the number of beds planned to be sold.
4 General fixed overheads of $£ 2520$ are also apportioned on the number of beds planned to be sold. The directors of Winter plc believe this to be a fair apportionment of the store's central fixed overheads.
5 The cost of carriage inwards and the cost of beds vary directly with the number of beds purchased.

Task 3
(a) Prepare a recommended monthly sales schedule in units which will maximize the profitability of Winter plc's bed department.
(b) Calculate the profit that will be reported per month if your recommendation is implemented.

AAT Technician's Stage
Fosterjohn Press Ltd is considering launching a new monthly magazine at a selling price of $£ 1$ per copy. Sales of the magazine are expected to be 500000 copies per month, but it is possible that the actual sales could differ quite significantly from this estimate.

Two different methods of producing the magazine are being considered and neither would involve any additional capital expenditure. The estimated production costs for each of the two methods of manufacture, together with the additional marketing and distribution costs of selling the new magazine, are summarised below:

Question SM 9.5

	Method A	Method B
Variable costs	0.55 per copy	0.50 per copy
Specific fixed costs	$£ 80000$	£120 000
	per month	per month
Semi-variable costs:		
The following estimates have been obtained:		
350000 copies	£55000 per month	$£ 47500$ per month
450000 copies	£65000 per month	$£ 52500$ per month
650000 copies	£85000 per month	£62 500 per month

It may be assumed that the fixed cost content of the semi-variable costs will remain constant throughout the range of activity shown.

The company currently sells a magazine covering related topics to those that will be included in the new publication and consequently it is anticipated that sales of this existing magazine will be adversely affected. It is estimated that for every ten copies sold of the new publication, sales of the existing magazine will be reduced by one copy.

Sales and cost data of the existing magazine are shown below:
Sales 220000 copies per month
Selling price $\quad 0.85$ per copy
Variable costs 0.35 per copy
Specific fixed costs $£ 80000$ per month

Required:

(a) Calculate, for each production method, the net increase in company profits which will result from the introduction of the new magazine, at each of the following levels of activity:

> 500000 copies per month
> 400000 copies per month
> 600000 copies per month
(12 marks)
(b) Calculate, for each production method, the amount by which sales volume of the new magazine could decline from the anticipated 500000 copies per month, before the company makes no additional profit from the introduction of the new publication.
(6 marks)
(c) Briefly identify any conclusions which may be drawn from your calculations.
(4 marks)
(Total 22 marks)
ACCA Foundation Costing

> Question SM 9.6 Decision-making and non-graphical CVP analysis

Mr Belle has recently developed a new improved video cassette and shown below is a summary of a report by a firm of management consultants on the sales potential and production costs of the new cassette.

Sales potential: The sales volume is difficult to predict and will vary with the price, but it is reasonable to assume that at a selling price of $£ 10$ per cassette, sales would be between 7500 and 10000 units per month. Alternatively, if the selling price was reduced to $£ 9$ per cassette, sales would be between 12000 and 18000 units per month.

Production costs: If production is maintained at or below 10000 units per month, then variable manufacturing costs would be approximately $£ 8.25$ per cassette and fixed costs $£ 12125$ per month. However, if production is planned to exceed 10000 units per month, then variable costs would be reduced to $£ 7.75$ per cassette, but the fixed costs would increase to $£ 16125$ per month.

Mr Belle has been charged $£ 2000$ for the report by the management consultants and, in addition, he has incurred $£ 3000$ development costs on the new cassette.

If Mr Belle decides to produce and sell the new cassette it will be necessary for him to use factory premises which he owns, but are leased to a colleague for a rental of $£ 400$ per month. Also he will resign from his current post in an electronics firm where he is earning a salary of $£ 1000$ per month.
Required:
(a) Identify in the question an example of
(i) an opportunity cost,
(ii) a sunk cost.
(3 marks)
(b) Making whatever calculations you consider appropriate, analyse the report from the consultants and advise Mr Belle of the potential profitability of the alternatives shown in the report.

Any assumptions considered necessary or matters which may require further investigation or comment should be clearly stated. (19 marks)
(Total 22 marks)
ACCA Level 1 Costing

Cost estimation and cost behaviour

Savitt Ltd manufactures a variety of products at its industrial site in Ruratania. One of the products, the LT, is produced in a specially equipped factory in which no other production takes place. For technical reasons the company keeps no stocks of either LTs or the raw material used in their manufacture. The costs of producing LTs in the special factory during the past four years have been as follows:
(2001)
(estimated)
(£)
2000
(£)

100000	130000	132000
71000	96000	115000
173000	235000	230000
33000	47000	44000
$\frac{206000}{\frac{£ 583000}{190000}}$	$\frac{246000}{£ 754000}$	$\frac{265000}{220000}$

The costs of raw materials and skilled and unskilled labour have increased steadily during the past four years at an annual compound rate of 20%, and the costs of factory overheads have increased at an annual compound rate of 15% during the same period. Power prices increased by 10% on 1 January 1999 and by 25% on the 1 January of each subsequent year. All costs except power are expected to increase by a further 20% during 2002. Power prices are due to rise by 25% on 1 January 2002.

The directors of Savitt Ltd are now formulating the company's production plan for 2002 and wish to estimate the costs of manufacturing the product LT. The finance director has expressed the view that 'the full relevant cost of producing LTs can be determined only if a fair share of general company overheads is allocated to them'. No such allocation is included in the table of costs above.

You are required to:
(a) use linear regression analysis to estimate the relationship of total production costs to volume for the products LT for 2002 (ignore general company overheads and do not undertake a separate regression calculation for each item of cost),
(12 marks)
(b) discuss the advantages and limitations of linear regression analysis for the estimation of cost-volume relationships,
(8 marks)
(c) comment on the view expressed by the finance director.
(5 marks)
Ignore taxation.
ICAEW Elements of Financial Decisions

Question SM 10.2 Q Limited used an incremental budgeting approach to setting its budgets for the year ending 30 June 2003.

The budget for the company's power costs was determined by analysing the past relationship between costs and activity levels and then adjusting for inflation of 6%.

The relationship between monthly cost and activity levels, before adjusting for 6% inflation, was found to be:

$$
\begin{aligned}
y & =£\left(14000+0.0025 x^{2}\right) \\
\text { where } y & =\text { total cost; and } \\
x & =\text { machine hours }
\end{aligned}
$$

In April 2003, the number of machine hours was 1525 and the actual cost incurred was $£ 16423$. The total power cost variance to be reported is nearest to
A $£ 3391$ (A)
B $£ 3391$ (F)
C $£ 3740$ (F)
D $£ 4580$ (F)
CIMA Management Accounting - Performance Management

Question SM 10.3 The overhead costs of RP Limited have been found to be accurately represented by the formula

$$
y=£ 10000+£ 0.25 x
$$

where y is the montly cost and x represents the activity level measured in machine hours.
Monthly activity levels, in machine hours, may be estimated using a combined regression analysis and time series model:

$$
a=100000+30 b
$$

where a represents the de-seasonalised monthly activity level and b represents the month number.
In month 240, when the seasonal index value is 108 , the overhead cost (to the nearest $£ 1000$) is expected to be
A $£ 35000$
B $£ 37000$
C $£ 39000$
D $£ 41000$
(3 marks)
CIMA Management Accounting - Performance Management

Measuring relevant costs and revenues for decision-making

The management of Springer plc is considering next year's production and purchase budgets.
One of the components produced by the company, which is incorporated into another product before being sold, has a budgeted manufacturing cost as follows:

Question SM 11.1
Make or buy decision

(£)

Direct material 14
Direct labour (4 hours at $£ 3$ per hour) 12
Variable overhead (4 hours at $£ 2$ per hour) 8
Fixed overhead (4 hours at $£ 5$ per hour) $\underline{20}$
Total cost
$\underline{54}$ per unit

Trigger plc has offered to supply the above component at a guaranteed price of $£ 50$ per unit.

Required:
(a) Considering cost criteria only, advise management whether the above component should be purchased from Trigger plc. Any calculations should be shown and assumptions made, or aspects which may require further investigation should be clearly stated. (6 marks)
(b) Explain how your above advice would be affected by each of the two separate situations shown below.
(i) As a result of recent government legislation if Springer plc continues to manufacture this component the company will incur additional inspection and testing expenses of $£ 56000$ per annum, which are not included in the above budgeted manufacturing costs.
(3 marks)
(ii) Additional labour cannot be recruited and if the above component is not manufactured by Springer plc the direct labour released will be employed in increasing the production of an existing product which is sold for $£ 90$ and which has a budgeted manufacturing cost as follows:

(£)

10
Direct labour (8 hours at $£ 3$ per hour) 24
Variable overhead (8 hours at $£ 2$ per hour) 16
Fixed overhead (8 hours at $£ 5$ per hour)

All calculations should be shown.
40
$\underline{90}$ per unit
(4 marks)
(c) The production director of Springer plc recently said:
‘We must continue to manufacture the component as only one year ago we purchased some special grinding equipment to be used exclusively by this component. The equipment cost $£ 100000$, it cannot be resold or used elsewhere and if we cease production of this component we will have to write off the written down book value which is $£ 80000$.'

Draft a brief reply to the production director commenting on his statement.
(4 marks)
(Total 17 marks)
ACCA Level 1 Costing

Question SM 11.2 Calculation of minimum selling price

You have received a request from EXE plc to provide a quotation for the manufacture of a specialized piece of equipment. This would be a one-off order, in excess of normal budgeted production. The following cost estimate has already been prepared:

Note
(£)

Direct materials:			
Steel	$10 \mathrm{~m}^{2}$ at $£ 5.00$		
	per sq. metre	1	50
Brass fittings		2	20
Direct labour			
Skilled	25 hours at $£ 8.00$ per hour	3	200
Semi-skilled	10 hours at $£ 5.00$ per hour	4	50
Overhead	35 hours at $£ 10.00$ per hour	5	350
Estimating time		6	100
Administrative overhead at 20% of			
			924
Profit at 25\% of total cost		8	231
Selling price			$\underline{1155}$

Notes

1. The steel is regularly used, and has a current stock value of $£ 5.00$ per sq. metre. There are currently 100 sq. metres in stock. The steel is readily available at a price of $£ 5.50$ per sq. metre.
2. The brass fittings would have to be bought specifically for this job: a supplier has quoted the price of $£ 20$ for the fittings required.
3. The skilled labour is currently employed by your company and paid at a rate of $£ 8.00$ per hour. If this job were undertaken it would be necessary either to work 25 hours overtime which would be paid at time plus one half or to reduce production of another product which earns a contribution of $£ 13.00$ per hour.
4. The semi-skilled labour currently has sufficient paid idle time to be able to complete this work.
5. The overhead absorption rate includes power costs which are directly related to machine usage. If this job were undertaken, it is estimated that the machine time required would be ten hours. The machines incur power costs of $£ 0.75$ per hour. There are no other overhead costs which can be specifically identified with this job.
6. The cost of the estimating time is that attributed to the four hours taken by the engineers to analyse the drawings and determine the cost estimate given above.
7. It is company policy to add 20% on to the production cost as an allowance against administration costs associated with the jobs accepted.
8. This is the standard profit added by your company as part of its pricing policy.

Required:
(a) Prepare, on a relevant cost basis, the lowest cost estimate that could be used as the basis for a quotation. Explain briefly your reasons for using each of the values in your estimate.
(12 marks)
(b) There may be a possibility of repeat orders from EXE plc which would occupy part of normal production capacity. What factors need to be considered before quoting for this order?
(7 marks)
(c) When an organisation identifies that it has a single production resource which is in short supply, but is used by more than one product, the optimum production plan is determined by ranking the products according to their contribution per unit of the scarce resource.

Using a numerical example of your own, reconcile this approach with the opportunity cost approach used in (a) above.
(a) Budgeted information for A Ltd for the following period, analysed by product, is shown below:

	Product	Product	Product
	I	II	III
Sales units (000s)	225	376	190
Selling price ($£$ per unit)	11.00	10.50	8.00
Variable costs (£ per unit)	5.80	6.00	5.20
Attributable fixed costs (£000s)	275	337	296

Question SM 11.3
Impact of a
product
abandonment decision and CVP analysis

General fixed costs, which are apportioned to products as a percentage of sales, are budgeted at $£ 1668000$.

Required:

(i) Calculate the budgeted profit of A Ltd, and of each of its products. (5 marks)
(ii) Recalculate the budgeted profit of A Ltd on the assumption that Product III is discontinued, with no effect on sales of the other two products. State and justify other assumptions made.
(5 marks)
(iii) Additional advertising, to that included in the budget for Product I, is being considered.

Calculate the minimum extra sales units required of Product I to cover additional advertising expenditure of $£ 80000$. Assume that all other existing fixed costs would remain unchanged.
(3 marks)
(iv) Calculate the increase in sales volume of Product II that is necessary in order to compensate for the effect on profit of a 10% reduction in the selling price of the product. State clearly any assumptions made.
(5 marks)
(b) Discuss the factors which influence cost behaviour in response to changes in activity.
(7 marks)
(Total 25 marks)
ACCA Cost and Management Accounting 1

Question SM 11.4 Price/output and key factor decisions

You work as a trainee for a small management consultancy which has been asked to advise a company, Rane Limited, which manufactures and sells a single product. Rane is currently operating at full capacity producing and selling 25000 units of its product each year. The cost and selling price structure for this level of activity is as follows:

> At 25000
> units output $(£$ per unit) $\quad(£$ per unit $)$
Production costs
Direct material 14
Direct labour 13
Variable production overhead 4
Fixed production overhead $\underline{8}$

Total production cost
Selling and distribution overhead:
Sales commission - 10% of sales value 6 Fixed

3
39

Administration overhead:
Fixed 2
Total cost 50
Mark up - 20\% $\underline{10}$
Selling price
$\underline{60}$
A new managing director has recently joined the company and he has engaged your organisation to advise on his company's selling price policy. The sales price of $£ 60$ has been derived as above from a cost-plus pricing policy. The price was viewed as satisfactory because the resulting demand enabled full capacity operation.

You have been asked to investigate the effect on costs and profit of an increase in the selling price. The marketing department has provided you with the following estimates of sales volumes which could be achieved at the three alternative sales prices under consideration.

Selling price per unit	$£ 70$	$£ 80$	$£ 90$
Annual sales volume (units)	20000	16000	11000

You have spent some time estimating the effect that changes in output volume will have on cost behaviour patterns and you have now collected the following information.

Direct material: The loss of bulk discounts means that the direct material cost per unit will increase by 15% for all units produced in the year if activity reduces below 15000 units per annum.
Direct labour: Savings in bonus payments will reduce labour costs by 10% for all units produced in the year if activity reduces below 20000 units per annum. Sales commission: This would continue to be paid at the rate of 10% of sales price. Fixed production overhead: If annual output volume was below 20000 units, then a machine rental cost of $£ 10000$ per annum could be saved. This will be the only change in the total expenditure on fixed production overhead.
Fixed selling overhead: A reduction in the part-time sales force would result in a $£ 5000$ per annum saving if annual sales volume falls below 24000 units. This will be the only change in the total expenditure on fixed selling and distribution overhead.
Variable production overhead: There would be no change in the unit cost for variable production overhead.
Administration overhead: The total expenditure on administration overhead would remain unaltered within this range of activity.
Stocks: Rane's product is highly perishable, therefore no stocks are held.

Task 1
(a) Calculate the annual profit which is earned with the current selling price of $£ 60$ per unit.
(b) Prepare a schedule to show the annual profit which would be earned with each of the three alternative selling prices.
Task 2
Prepare a brief memorandum to your boss, Chris Jones. The memorandum should cover the following points:
(a) Your recommendation as to the selling price which should be charged to maximise Rane Limited's annual profits.
(b) Two non-financial factors which the management of Rane Limited should consider before planning to operate below full capacity.

Another of your consultancy's clients is a manufacturing company, Shortage Limited, which is experiencing problems in obtaining supplies of a major component. The component is used in all of its four products and there is a labour dispute at the supplier's factory, which is restricting the component's availability.

Supplies will be restricted to 22400 components for the next period and the company wishes to ensure that the best use is made of the available components. This is the only component used in the four products, and there are no alternatives and no other suppliers.

The components cost $£ 2$ each and are used in varying amounts in each of the four products.

Shortage Limited's fixed costs amount to $£ 8000$ per period. No stocks are held of finished goods or work in progress.

The following information is available concerning the products.

Maximum demand per period	Product A 4000 units $(£$ per unit)	Product B $\mathbf{2 5 0 0}$ units $(£$ per unit)	Product C $\mathbf{3 6 0 0}$ units $(£$ per unit)	Product D 2750 units $(£$ per unit)
Selling price	14	12	16	17
Component costs	4	2	6	8
Other variable costs	7	9	6	4

Task 3
(a) Prepare a recommended production schedule for next period which will maximise Shortage Limited's profit.
(b) Calculate the profit that will be earned in the next period if your recommended production schedule is followed.

AAT Technicians Stage

The application of linear programming to management accounting

Question SM 12.1 Optimal output and calculation of shadow prices using graphical approach

MF plc manufactures and sells two types of product to a number of customers. The company is currently preparing its budget for the year ending 31 December 2003 which it divides into 12 equal periods.

The cost and resource details for each of the company's product types are as follows:

	Product type M	Product type F
$£$	$£$	
Selling price per unit	200	210
Variable costs per unit		
\quad Direct material $P(£ 2.50$ per litre $)$	20	25
Direct material $Q(£ 4.00$ per litre $)$	40	20
Direct labour $(\nexists 7.00$ per hour $)$	28	35
Overhead ($£ 4.00$ per hour $)$	16	20
Fixed production cost per unit	40	50
	Units	Units
Maximum sales demand in period 1	1000	3000

The fixed production cost per unit is based upon an absorption rate of $£ 10$ per direct labour hour and a total annual production activity of 180000 direct labour hours. One-twelfth of the annual fixed production cost will be incurred in period 1.

In addition to the above costs, non-production overhead costs are expected to be $£ 57750$ in period 1.

During period 1, the availability of material P is expected to be limited to 31250 litres. Other materials and sufficient direct labour are expected to be available to meet demand.

It is MF plc's policy not to hold stocks of finished goods.

Required:

(a) Calculate the number of units of product types M and F that should be produced and sold in period 1 in order to maximize profit.
(4 marks)
(b) Using your answer to (a) above, prepare a columnar budgeted profit statement for period 1 in a marginal cost format.
(4 marks)
After presenting your statement to the budget management meeting, the production manager has advised you that in period 1 the other resources will also be limited. The maximum resources available will be:

Material P	31250 litres
Material Q	20000 litres
Direct labour	17500 hours

It has been agreed that these factors should be incorporated into a revised plan and that the objective should be to make as much profit as possible from the available resources.

Required:
(c) Use graphical linear programming to determine the revised production plan for period 1. State clearly the number of units of product types M and F that are to be produced.
(10 marks)
(d) Using your answer to part (c) above, calculate the profit that will be earned from the revised plan. (3 marks)
(e) Calculate and explain the meaning of the shadow price for material Q. (5 marks)
(f) Discuss the other factors that should be considered by MF plc in relation to the revised production plan.

A company manufactures two products (X and Y) in one of its factories. Production capacity is limited to 85000 machine hours per period. There is no restriction on direct labour hours.

The following information is provided concerning the two products:

	Product X	Product Y
Estimated demand (000 units)	315	135
Selling price (per unit)	$£ 11.20$	$£ 15.70$
Variable costs (per unit)	$£ 6.30$	$£ 8.70$
Fixed costs (per unit)	$£ 4.00$	$£ 7.00$
Machine hours (per 000 units)	160	280
Direct labour hours (per 000 units)	120	140

Question SM 12.2

 Limiting factor optimum production and the use of simultaneous equations where more than one scarce factor existsFixed costs are absorbed into unit costs at a rate per machine hour based upon full capacity.
Required:
(a) Calculate the production quantities of Products X and Y which are required per period in order to maximise profit in the situation described above. (5 marks)
(b) Prepare a marginal costing statement in order to establish the total contribution of each product, and the net profit per period, based on selling the quantities calculated in (a) above.
(4 marks)
(c) Calculate the production quantities of Products X and Y per period which would fully utilise both machine capacity and direct labour hours, where the available direct labour hours are restricted to 55000 per period. (The limit of 85000 machine hours remains.)
(5 marks)
(Total 14 marks)
ACCA Foundation Paper 3

Activity-based costing

Question SM 13.1 The following budgeted information relates to Brunti plc for the forthcoming period:

Preparation of

 conventional costing and ABC profit statements| | Products | | |
| :--- | :---: | :---: | :---: |
| | XYI
 $(\mathbf{0 0 0})$ | YZT
 $\mathbf{(0 0 0)}$ | ABW
 $\mathbf{(0 0 0)}$ |
| Sales and production (units) | 50 | 40 | 30 |
| Selling price (per unit) | $45)$ | $(£)$ | $(£)$ |
| Prime cost (per unit) | 32 | 95 | 73 |
| | Hours | Hours | Hours |
| Machine department
 (machine hours per unit) | 2 | 5 | 4 |
| Assembly department
 (direct labour hours
 per unit) | 7 | 3 | 2 |

Overheads allocated and apportioned to production departments (including service cost centre costs) were to be recovered in product costs as follows:

Machine department at $£ 1.20$ per machine hour Assembly department at $£ 0.825$ per direct labour hour
You ascertain that the above overheads could be re-analysed into 'cost pools' as follows:

Cost pool	$\mathbf{£ 0 0 0}$	Cost driver	Quantity for the period
Machining services	357	Machine hours	420000
Assembly services	318	Direct labour hours	530000
Set-up costs	26	Set-ups	520
Order processing	156	Customer orders	32000
Purchasing	$\underline{84}$	Suppliers orders	11200
	$\underline{941}$		

You have also been provided with the following estimates for the period:

	Products		
	XYI	YZT	ABW
Number of set-ups	120	200	200
Customer orders	8000	8000	16000
Suppliers' orders	3000	4000	4200
			ACTIVITY-BASED COSTING

Required:
(a) Prepare and present profit statements using:
(i) conventional absorption costing;
(5 marks)
(ii) activity-based costing;
(10 marks)
(b) Comment on why activity-based costing is considered to present a fairer valuation of the product cost per unit.
(5 marks)
(Total 20 marks)
ACCA Paper 8 Managerial Finance
In a marginal costing system only variable costs would be assigned to products or

Question SM 13.2

 services, in which case management may rely on a contribution approach to decisions.Required:
(a) Explain and discuss the contribution approach to decisions giving brief examples and drawing attention to any limitations.
(6 marks)
A full absorption costing system would involve the assignment of both variable and fixed overhead costs to products. A traditional full absorption costing system typically uses a single volume related allocation base (or cost driver) to assign overheads to products. An activity based costing (ABC) system would use multiple allocation bases (or cost drivers), taking account of different categories of activities and related overhead costs such as unit, batch, product sustaining and facility sustaining.
Required:
(b) Describe the likely stages involved in the design and operation of an ABC system.
(4 marks)
(c) Explain and discuss volume related allocation bases (or cost drivers), giving an example of one within a traditional costing system. Contrast this with the multiple allocation bases (or cost drivers) of an ABC system.
(6 marks)
(d) Briefly elaborate on the different categories of activities and related overhead costs, such as unit, batch, product sustaining and facility sustaining, which may be used in an ABC system.
(4 marks)
(Total 20 marks)
ACCA Paper 8 Managerial Finance
The following information provides details of the costs, volume and cost drivers for a particular period in respect of ABC plc, a hypothetical company:

	Product X	Product Y	Product Z	Total
1. Production and sales (units)	30000	20000	8000	
2. Raw material usage (units)	5	5	11	
3. Direct material cost	$£ 25$	$£ 20$	$£ 11$	$£ 1238000$
4. Direct labour hours	$11 / 3$	2	1	88000
5. Machine hours	$11 / 3$	1	2	76000
6. Direct labour cost	8	$£ 12$	$£ 6$	
7. Number of production runs	3	7	20	30
8. Number of deliveries	9	3	20	32
9. Number of receipts $(2 \times 7)^{\text {a }}$	15	35	220	270
10. Number of production orders	15	10	25	50
11. Overhead costs:				
Set-up	30000			
Machines	760000			
Receiving	435000			
Packing	250000			
Engineering	373000			
	$\underline{£ 1848000}$			

Question SM 13.3

 Computation of product costs for traditional and ABC systems[^0]In the past the company has allocated overheads to products on the basis of direct labour hours.

However, the majority of overheads are more closely related to machine hours than direct labour hours.

The company has recently redesigned its cost system by recovering overheads using two volume-related bases: machine hours and a materials handling overhead rate for recovering overheads of the receiving department. Both the current and the previous cost system reported low profit margins for product X, which is the company's highest-selling product. The management accountant has recently attended a conference on activity-based costing, and the overhead costs for the last period have been analysed by the major activities in order to compute activity-based costs.

From the above information you are required to:
(a) Compute the product costs using a traditional volume-related costing system based on the assumptions that:
(i) all overheads are recovered on the basis of direct labour hours (i.e. the company's past product costing system);
(ii) the overheads of the receiving department are recovered by a materials handling overhead rate and the remaining overheads are recovered using a machine hour rate (i.e. the company's current costing system).
(b) Compute product costs using an activity-based costing system.
(c) Briefly explain the differences between the product cost computations in (a) and (b).

Decision-making under conditions of risk and uncertainty

The Dunburgh Bus Company operated during the year ended 31 May 2000 with the following results:
(i) Average variable costs were $£ 0.75$ per bus mile.
(ii) Total fixed costs were $£ 1750000$.
(iii) The fare structure per journey was as follows:

Adults 0 to 3 miles	$£ 0.20$
4 to 5 miles	$£ 0.30$
over 5 miles	$£ 0.50$
Juveniles (any distance)	$£ 0.15$
Senior citizens (any distance)	$£ 0.10$

(iv) Total passenger journeys paid for were 24000000 which represented 60% capacity utilisation. The capacity utilised comprised 60% adult, 20% juvenile and 20% senior citizen journeys. The adult journeys were broken down into $0-3$ miles: $50 \%, 4-5$ miles: 30%, over 5 miles: 20%.
(v) Twenty routes were operated with four buses per route, each bus covering 150 miles per day for 330 days of the year. The remaining days were taken up with maintenance work on the buses.
(vi) Advertising revenue from displays inside and outside the buses totalled $£ 250000$ for the year. This is a fixed sum from contracts which will apply to each year up to 31 May 2002.

It is anticipated that all costs will increase by 10% due to inflation during the year to 31 May 2001 and that fares will be increased by 5% during the year. Whilst the fare increase of 5% has already been agreed and cannot be altered, it is possible that inflation might differ from the 10% rate anticipated.
Required:
(a) Prepare a statement showing the calculation of the net profit or loss for the year ended 31 May 2000
(5 marks)
(b) Calculate the average percentage capacity utilisation at which the company will break even during the forthcoming year to 31 May 2001 if all fares are increased by 5%, cost inflation is 10% as anticipated and the passenger mix and bus operating activity are the same as for the year to 31 May 2000. (5 marks)
(c) Now assume that management have some doubts about the level of capacity utilisation and rate of cost inflation which will apply in the year to 31 May 2001. Other factors are as previously forecast. Revised estimates of the likely levels of capacity utilisation and inflation are as follows:

Capacity

Capacity utilisation	Probability	Inflation	Probability
70%	0.1	8%	0.3
60%	0.5	10%	0.6
50%	0.4	12%	0.1

(Capacity utilisation rates and inflation rates are independent of each other.)

Question SM 14.1 Calculation of expected value and the presentation of a probability distribution
(i) Calculate the expected value of net profit or loss for the year to 31 May 2001 and show the range of profits or losses which may occur.
(9 marks)
(ii) Draw up a table of the possible profits and losses and their probabilities as calculated in (i) for the year ended 31 May 2001 in a way which brings to the attention of management the risks and opportunities which are implied and comment briefly on the figures.
(5 marks)
(d) Comment on factors which have not been incorporated into the model used in (c) above which may affect its usefulness to management in profit forecasting.
(Total 30 marks)
ACCA Level 2 Cost Accounting
Question SM 14.2 E Ltd manufactures a hedge-trimming device which has been sold at $£ 16$ per unit Pricing decision and the calculation of expected profit and margin of safety for a number of years. The selling price is to be reviewed and the following information is available on costs and likely demand.

The standard variable cost of manufacture is $£ 10$ per unit and an analysis of the cost variances for the past 20 months show the following pattern which the production manager expects to continue in the future.

Adverse variances of $+10 \%$ of standard variable cost occurred in ten of the months.
Nil variances occurred in six of the months.
Favourable variances of -5% of standard variable cost occurred in four of the months.

Monthly data

Fixed costs have been $£ 4$ per unit on an average sales level of 20000 units but these costs are expected to rise in the future and the following estimates have been made for the total fixed cost:

Optimistic estimate (Probability 0.3)	82000
Most likely estimate (Probability 0.5)	85000
Pessimistic estimate (Probability 0.2)	90000

The demand estimates at the two new selling prices being considered are as follows:
If the selling
price/unit is
demand would be: $\quad £ 17 \quad £ 18$

Optimistic estimate (Probability 0.2) Most likely estimate (Probability 0.5)	21000 units	19000 units
Pessimistic estimate (Probability 0.3)	19000 units	17500 units
	1600 units	15500 units

It can be assumed that all estimates and probabilities are independent.
You are required to
(a) advise management, based only on the information given above, whether they should alter the selling price and, if so, the price you would recommend;
(6 marks)
(b) calculate the expected profit at the price you recommend and the resulting margin of safety, expressed as a percentage of expected sales; (6 marks)
(c) criticise the method of analysis you have used to deal with the probabilities given in the question; (4 marks)
(d) describe briefly how computer assistance might improve the analysis. (4 marks)
(Total 20 marks)
CIMA Stage 3 Management Accounting Techniques

Capital investment decisions

An investment project has the following expected cash flows over its economic life Question SM 15.1 of three years:

	$(\mathbf{(})$
Year 0	(142700)
1	51000
2	62000
3	73000

Required:
(i) Calculate the net present value (NPV) of the project at discount rates of 0%, 10% and 20% respectively.
(ii) Draw a graph of the project NPVs calculated in (i) and use the graph to estimate, and clearly indicate, the project internal rate of return (IRR) to the nearest integer percentage.
(8 marks)
ACCA Foundation Stage Paper 3
P , a multinational organization, is currently appraising a major capital investment project which will revolutionise its business. This investment involves the installation of an Intranet. [An Intranet is a private Internet reserved for use by employees and/or customers who have been given the authority and passwords necessary to use that network. It is a private network environment built around Internet technologies and standards.]

Question SM 15.2
 Calculation of payback, accounting rate of return and NPV

You have recently been appointed as the Management Accountant for this project and have been charged with the responsibility of preparing the financial evaluation of the proposed investment. You have carried out some initial investigations and find that management currently uses a target accounting rate of return of 25% and a target payback period of four years as the criteria for the acceptance or rejection of major capital investments.

You propose to use the net present value method of project appraisal and, having carried out some further investigations, you ascertain the following information for the project:

	$\mathbf{£ 0 0 0}$
Initial outlay	2000
Cash savings:	
Years 1 to 3	$\mathbf{4 0 0}$ per annum
Years 4 to 5	500 per annum
Years 6 to 8	450 per annum
Years 9 to 10	400 per annum

At the end of the project's life, no residual value is expected for the project.
The company's cost of capital is 15% per annum. All cash savings are assumed to occur at the end of each year.
Ignore taxation and inflation.

Required:
As Management Accountant for this project, you are required to:
(a) write a report to the management of P which incorporates the following:
(i) a full analysis and evaluation of the existing methods of project appraisal and of your proposed method of project appraisal;
(ii) a recommendation on a purely financial basis as to whether or not the project should be undertaken;
(iii) a discussion of the difficulties associated with the net present value method when appraising this type of investment;
(15 marks)
CIMA Management Accountant - Decision Making

> Question SM 15.3 Discussion of alternative investment appraisal techniques and the calculation of payback and NPV for two mutually exclusive projects
(a) Explain why Net Present Value is considered technically superior to Payback and Accounting Rate of Return as an investment appraisal technique even though the latter are said to be easier to understand by management. Highlight the strengths of the Net Present Value method and the weaknesses of the other two methods.
(8 marks)
(b) Your company has the option to invest in projects T and R but finance is only available to invest in one of them.

You are given the following projected data:

Project	\mathbf{T} $(£)$	\mathbf{R} $(\mathbf{£})$
Initial cost	70000	60000
Profits: Year 1	15000	20000
Year 2	18000	25000
Year 3	20000	(50000)
Year 4	32000	10000
Year 5	18000	3000
Year 6		2000

You are told:
(1) All cash flows take place at the end of the year apart from the original investment in the project which takes place at the beginning of the project.
(2) Project T machinery is to be disposed of at the end of year 5 with a scrap value of $£ 10000$.
(3) Project R machinery is to be disposed of at the end of year 3 with a nil scrap value and replaced with new project machinery that will cost $£ 75000$.
(4) The cost of this additional machinery has been deducted in arriving at the profit projections for R for year 3. It is projected that it will last for three years and have a nil scrap value.
(5) The company's policy is to depreciate its assets on a straight line basis.
(6) The discount rate to be used by the company is 14%.

Required:
(i) If investment was to be made in project R determine whether the machinery should be replaced at the end of year 3 .
(4 marks)
(ii) Calculate for projects T and R taking into consideration your decision in (i) above:
(a) Payback period
(b) Net present value and advise which project should be invested in, stating your reasons.
(10 marks)
(c) Explain what the discount rate of 14% represents and state two ways how it might have been arrived at.

Sound Equipment Ltd was formed five years ago to manufacture parts for hi-fi equipment. Most of its customers were individuals wanting to assemble their own systems. Recently, however, the company has embarked on a policy of expansion and has been approached by JBZ plc, a multinational manufacturer of consumer electronics. JBZ has offered Sound Equipment Ltd a contract to build an amplifier for its latest consumer product. If accepted, the contract will increase Sound Equipment's turnover by 20%.

JBZ's offer is a fixed price contract over three years, although it is possible for Sound Equipment to apply for subsequent contracts. The contract will involve Sound Equipment purchasing a specialist machine for $£ 150,000$. Although the machine has a 10-year life, it would be written off over the three years of the initial contract as it can only be used in the manufacture of the amplifier for JBZ.
The production director of Sound Equipment has already prepared a financial appraisal of the proposal. This is reproduced below. With a capital cost of $£ 150,000$ and total profits of $£ 60300$, the production director has calculated the return on capital employed as 40.2%. As this is greater than Sound Equipment's cost of capital of 18%, the production director is recommending that the board accepts the contract.

	Year 1 (£)	Year 2 (£)	Year 3 (£)	Total
Turnover	180000	180000	180000	540000
Materials	60000	60000	60000	180000
Labour	40000	40000	40000	120000
Depreciation	50000	50000	50000	150000
Pre-tax profit	30000	30000	30000	90000
Corporation tax at 33\%	9900	9900	9900	29700
After tax profit	20100	20100	20100	60300

You are employed as the assistant accountant to Sound Equipment Ltd and report to John Green, the financial director, who asks you to carry out a full financial appraisal of the proposed contract. He feels that the production director's presentation is inappropriate. He provides you with the following additional information:

- Sound Equipment pays corporation tax at the rate of 33%;
- the machine will qualify for a 25% writing-down allowance on the reducing balance;
- the machine will have no further use other than in manufacturing the amplifier for JBZ;
- on ending the contract with JBZ, any outstanding capital allowances can be claimed as a balancing allowance;
- the company's cost of capital is 18%;
- the cost of materials and labour is forecast to increase by 5% per annum for years 2 and 3 .
John Green reminds you that Sound Equipment operates a just-in-time stock policy and that production will be delivered immediately to JBZ, who will, under the terms of the contract, immediately pay for the deliveries. He also reminds you that suppliers are paid immediately on receipt of goods and that employees are also paid immediately.
Write a report to the financial director. Your report should:
(a) use the net present value technique to identify whether or not the initial threeyear contract is worthwhile;
(b) explain your approach to taxation in your appraisal;
(c) identify one other factor to be considered before making a final decision.

Notes:
For the purpose of this task, you may assume the following:

- the machine would be purchased at the beginning of the accounting year;
- there is a one-year delay in paying corporation tax;
- all cashflows other than the purchase of the machine occur at the end of each year;
- Sound Equipment has no other assets on which to claim capital allowances.

Question SM 15.4
Calculation of NPV incorporating taxation

The budgeting process

Question SM 16.1 Wollongong wishes to calculate an operating budget for the forthcoming period. Preparation of functional budgets Information regarding products, costs and sales levels is as follows:

Product	A	B
Materials required		
X (kg)	2	3
Y (litres)	1	4
Labour hours required		
\quad Skilled (hours)	4	2
\quad Semi-skilled (hours)	2	5
Sales level (units)	2000	1500
Opening stocks (units)	100	200

Closing stock of materials and finished goods will be sufficient to meet 10% of demand. Opening stocks of material X was 300 kg and for material Y was 1000 litres. Material prices are $£ 10$ per kg for material X and $£ 7$ per litre for material Y. Labour costs are $£ 12$ per hour for the skilled workers and $£ 8$ per hour for the semi skilled workers.

Required:
Produce the following budgets:
(a) production (units);
(b) materials usage (kg and litres);
(c) materials purchases (kg , litres and $£$); and
(d) labour (hours and $£$).
(10 marks)
ACCA Paper 1.2 - Financial information for Management
Question SM 16.2 A division of Bud plc is engaged in the manual assembly of finished products F1 Preparation of functional budgets and budgeted profit statement and F2 from bought-in components. These products are sold to external customers. The budgeted sales volumes and prices for Month 9 are as follows:

Product	Units	Price
F1	34000	$£ 50.00$
F2	58000	$£ 30.00$

Finished goods stockholding budgeted for the end of Month 9, is 1000 units of F1 and 2000 units of F2, with no stock at the beginning of that month. The purchased components C3 and C4 are used in the finished products in the quantities shown below. The unit price is for just-in-time delivery of the components; the company holds no component stocks.

	Component	
Product	C3	C4
F1 (per unit)	8 units	4 units
F2 (per unit)	4 units	3 units
Price (each)	$£ 1.25$	$£ 1.80$

The standard direct labour times and labour rates and the budgeted monthly manufacturing overhead costs for the assembly and finishing departments for Month 9 are given below:

Product	Assembly	Finishing
F1 (per unit)	30 minutes	12 minutes
F2 (per unit)	15 minutes	10 minutes
Labour rate (per hour) Manufacturing overhead cost for the month	$£ 5.00$	$£ 6.00$
6617500	$£ 204000$	

Every month a predetermined direct labour hour recovery rate is computed in each department for manufacturing overhead and applied to items produced in that month.
The selling overhead of $£ 344000$ per month is applied to products based on a predetermined percentage of the budgeted sales value in each month.
Required:
(a) Prepare summaries of the following budgets for Month 9:
(i) component purchase and usage (units and value);
(ii) direct labour (hours and value);
(iii) departmental manufacturing overhead recovery rates;
(iv) selling overhead recovery rate;
(v) stock value at the month-end. (8 marks)
(b) Tabulate the standard unit cost and profit of each of F1 and F2 in Month 9.
(3 marks)
(c) Prepare a budgeted profit and loss account for Month 9 which clearly incorporates the budget values obtained in (a) above.
(3 marks)
(d) Explain clearly the implications of the company's treatment of manufacturing overheads, i.e. computing a monthly overhead rate, compared to a predetermined overhead rate prepared annually. (6 marks)
(Total 20 marks)
ACCA Paper 8 Managerial Finance
A redundant manager who received compensation of $£ 80000$ decides to commence business on 4 January, manufacturing a product for which he knows there is a ready market. He intends to employ some of his former workers who were also

Question SM 16.3

Preparation of cash budgets
3. Variable production cost per unit

Direct materials	7
Direct wages	6
Variable overhead	$\underline{2}$
	$\underline{15}$

4. Raw material stocks costing $£ 10000$ have been purchased (out of the manager's $£ 80000$) to enable production to commence and it is intended to buy, each month, 50% of the materials required for the following month's production requirements. The other 50% will be purchased in the month of production. Payment will be made 30 days after purchase.
5. Direct workers have agreed to have their wages paid into bank accounts on the seventh working day of each month in respect of the previous month's earnings.
6. Variable production overhead: 60% is to be paid in the month following the month it was incurred and 40% is to be paid one month later.
7. Fixed overheads are $£ 4000$ per month. One quarter of this is paid in the month incurred, one half in the following month, and the remainder represents depreciation on the second-hand machinery.
8. Amounts receivable: a 5% cash discount is allowed for payment in the current month and 20% of each month's sales qualify for this discount. 50% of each month's sales are received in the following month, 20% in the third month and 8% in the fourth month. The balance of 2% represents anticipated bad debts.
You are required to:
(a) (i) prepare a cash budget for each of the first four months, assuming that overdraft facilities will be available;
(17 marks)
(ii) state the amount receivable from customers in May; (4 marks)
(b) describe briefly the benefits to cash budgeting from the use of a particular type of software package.

Management control systems

The Viking Smelting Company established a division, called the reclamation division, two years ago, to extract silver from jewellers' waste materials. The waste materials are processed in a furnace, enabling silver to be recovered. The silver is then further processed into finished products by three other divisions within the company.
A performance report is prepared each month for the reclamation division which is then discussed by the management team. Sharon Houghton, the newly appointed financial controller of the reclamation division, has recently prepared her first report for the four weeks to 31 May. This is shown below:

| Performance Report Reclamation Division
 4 weeks to 31 May
 Actual | | | | Budget |
| :--- | :---: | :---: | :---: | ---: | Variance \quad Comments

${ }^{\mathrm{a}}(\mathrm{A})=$ adverse, $(\mathrm{F})=$ favourable
In preparing the budgeted figures, the following assumptions were made for May:

- the reclamation division was to employ four teams of six production employees;
- each employee was to work a basic 42 -hour week and be paid $£ 7.50$ per hour for the four weeks of May;
- social security and other employment costs were estimated at 40% of basic wages;
- a bonus, shared amongst the production employees, was payable if production exceeded 150 tonnes. This varied depending on the output achieved;

1. if output was between 150 and 199 tonnes, the bonus was $£ 3$ per tonne produced;
2. if output was between 200 and 249 tonnes, the bonus was $£ 8$ per tonne produced;
3. if output exceeded 249 tonnes the bonus was $£ 13$ per tonne produced;

- the cost of fuel was $£ 75$ per tonne;
- consumables were $£ 10$ per tonne;
- power comprised a fixed charge of $£ 500$ per four weeks plus $£ 5$ per tonne for every tonne produced;
- overheads directly attributable to the division were $£ 20000$;
- plant maintenance was to be apportioned to divisions on the basis of the capital values of each division;
- the cost of Viking's central services was to be shared equally by all four divisions.

Question SM 17.1 Preparation of a flexible budget performance report

You are the deputy financial controller of the reclamation division. After attending her first monthly meeting with the board of the reclamation division, Sharon Houghton arranges a meeting with you. She is concerned about a number of issues, one of them being that the current report does not clearly identify those expenses and variances which are the direct responsibility of the reclamation division.
Task 1
Sharon Houghton asks you to prepare a flexible budget report for the reclamation division for May in a form consistent with responsibility accounting.

On receiving your revised report. Sharon tells you about the other questions raised at the management meeting when the original report was presented. These are summarised below:
(i) Why are the budget figures based on two-year-old data taken from the proposal recommending the establishment of the reclamation division?
(ii) Should the budget data be based on what we were proposing to do or what we actually did do?
(iii) Is it true that the less we produce the more favourable our variances will be?
(iv) Why is there so much maintenance in a new division with modern equipment and why should we be charged with the actual costs of the maintenance department even when they overspend?
(v) Could the comments, explaining the variances, be improved?
(vi) Should all the variances be investigated?
(vii) Does showing the cost of central services on the divisional performance report help control these costs and motivate the divisional managers?
Task 2
Prepare a memo for the management of the reclamation division. Your memo should:
(a) answer their queries and justify your comments;
(b) highlight the main objective of your revised performance report developed in Task 1 and give two advantages of it over the original report

AAT Technicians Stage

Question SM 17.2 Sales forecasting removing seasonal variations, flexible budgets and budget preparation

You work as the assistant to the management accountant for Henry Limited, a medium-sized manufacturing company. One of its products, product P , has been very successful in recent years, showing a steadily increasing trend in sales volumes. Sales volumes for the four quarters of last year were as follows:

	Quarter	Quarter	Quarter	Quarter
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Actual sales volume (units)	420000	450000	475000	475000

A new assistant has recently joined the marketing department and she has asked you for help in understanding the terminology which is used in preparing sales forecasts and analysing sales trends. She has said: 'My main problem is that I do not see why my boss is so enthusiastic about the growth in product P's sales volume. It looks to me as though the rate of growth is really slowing down and has actually stopped in quarter 4. I am told that I should be looking at the deseasonalised or seasonally adjusted sales data but I do not understand what is meant by this.'

You have found that product P's sales are subject to the following seasonal variations:

	Quarter	Quarter	Quarter	Quarter
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Seasonal variation (units)	+25000	+15000	0	-40000

Task 1
(a) Adjust for the seasonal variations to calculate deseasonalised or seasonally adjusted sales volume (i.e. the trend figures) for each quarter of last year.
(b) Assuming that the trend and seasonal variations will continue, forecast the sales volumes for each of the four quarters of next year.

Task 2

Prepare a memorandum to the marketing assistant which explains:
(a) what is meant by seasonal variations and deseasonalised or seasonally adjusted data;
(b) how they can be useful in analysing a time series and preparing forecasts.

Use the figures for product P's sales to illustrate your explanations.

Task 3

Using the additional data below, prepare a further memorandum to the marketing assistant which explains the following:
(a) why fixed budgets are useful for planning but flexible budgets may be more useful to enable management to exercise reflective control over distribution costs,
(b) two possible activity indicators which could be used as a basis for flexing the budget for distribution costs,
(c) how a flexible budget cost allowance is calculated and used for control purposes. Use your own examples and figures where appropriate to illustrate your explanations.

Additional data:
The marketing assistant has now approached you for more help in understanding the company's planning and control systems. She has been talking with the distribution manager, who has tried to explain how flexible budgets are used to control distribution costs within Henry Limited. She makes the following comment. 'I thought that budgets were supposed to provide a target to plan our activities and against which to monitor our costs. How can we possibly plan and control our costs if we simply change the budgets when activity levels alter?'

Product Q is another product which is manufactured and sold by Henry Limited. In the process of preparing budgetary plans for next year the following information has been made available to you.

1. Forecast sales units of product Q for the year $=18135$ units.
2. Closing stocks of finished units of product Q at the end of next year will be increased by 15% from their opening level of 1200 units.
3. All units are subject to quality control check. The budget plans are to allow for 1% of all units checked to be rejected and scrapped at the end of the process. All closing stocks will have passed this quality control check.
4. Five direct labour hours are to be worked for each unit of product Q processed, including those which are scrapped after the quality control check. Of the total hours to be paid for, 7.5% are budgeted to be idle time.
5. The standard hourly rate of pay for direct employees is $£ 6$ per hour.
6. Material M is used in the manufacture of product Q . One finished unit of Q contains 9 kg of M but there is a wastage of 10% of input of material M due to evaporation and spillage during the process.
7. By the end of next year stocks of material M are to be increased by 12% from their opening level of 8000 kg . During the year a loss of 1000 kg is expected due to deterioration of the material in store.

Task 4

Prepare the following budgets for the forthcoming year:
(a) production budget for product Q , in units;
(b) direct labour budget for product Q, in hours and in $£$;
(c) material usage budget for material M , in kg ;
(d) material purchases budget for material M , in kg .

Task 5
The supplier of material M was warned that available supplies will be below the amount indicated in your budget for Task 4 part (d) above. Explain the implications of this shortage and suggest four possible actions which could be taken to overcome the problem. For each suggestion, identify any problems which may arise.

AAT Technicians Stage

Question SM 17.3 Preparation of flexible budgets

Data
Rivermede Ltd makes a single product called the Fasta. Last year, Steven Jones, the managing director of Rivermede Ltd, attended a course on budgetary control. As a result, he agreed to revise the way budgets were prepared in the company. Rather than imposing targets for managers, he encouraged participation by senior managers in the preparation of budgets.

An initial budget was prepared but Mike Fisher, the sales director, felt that the budgeted sales volume was set too high. He explained that setting too high a budgeted sales volume would mean his sales staff would be de-motivated because they would not be able to achieve that sales volume. Steven Jones agreed to use the revised sales volume suggested by Mike Fisher.

Both the initial and revised budgets are reproduced below complete with the actual results for the year ended 31 May.

Rivermede Ltd - budgeted and actual costs for the year ended 31 May

Fast production and sales (units)	Original budget $\mathbf{2 4 0 0 0}$ $(£)$	Revised budget $\mathbf{2 0 0 0 0}$ $(£)$	Actual results $\mathbf{2 2 0 0 0}$ $(£)$	Variances from revised budget $\mathbf{2 0 0 0}$ $(£)$	(F)
Variable costs Material Labour	216000	180000	206800	26800	(A)
Semi-variable costs Heat, light and power	288000	240000	255200	15200	(A)
Fixed costs Rent, rates and depreciation	$\underline{40000}$	$\underline{40000}$	$\underline{38000}$	$\underline{2000}$	(F)
	$\underline{575000}$	$\underline{487000}$	$\underline{533400}$	$\underline{46400}$	(A)

Assumptions in the two budgets

1. No change in input prices
2. No change in the quantity of variable inputs per Fasta

As the management accountant at Rivermede Ltd, one of your tasks is to check that invoices have been properly coded. On checking the actual invoices for heat, light and power for the year to 31 May, you find that one invoice for $£ 7520$ had been incorrectly coded. The invoice should have been coded to materials.
Task 1
(a) Using the information in the original and revised budgets, identify:

- the variable cost of material and labour per Fasta;
- the fixed and unit variable cost within heat, light and power.
(b) Prepare a flexible budget, including variances, for Rivermede Ltd after correcting for the miscoding of the invoice.

Data

On receiving your flexible budget statement, Steven Jones states that the total adverse variance is much less than the $£ 46400$ shown in the original statement. He
also draws your attention to the actual sales volume being greater than in the revised budget. He believes these results show that a participative approach to budgeting is better for the company and wants to discuss this belief at the next board meeting. Before doing so, Steven Jones asked for your comments.

Task 2

Write a memo to Steven Jones. Your memo should:
(a) briefly explain why the flexible budgeting variances differ from those in the original statement given in the data to task 1 ;
(b) give two reasons why a favourable cost variance may have arisen other than through the introduction of participative budgeting;
(c) give two reasons why the actual sales volume compared with the revised budget's sales volume may not be a measure of improved motivation following the introduction of participative budgeting.

AAT Technicians Stage

Data

Happy Holidays Ltd sells holidays to Xanadu through newspaper advertisements. Tourist are flown each week of the holiday season to Xanadu, where they take a 10day touring holiday. In 2000, Happy Holidays began to use the least-squares regression formula to help forecast the demand for its holidays.

You are employed by Happy Holidays as an accounting technician in the financial controller's department. A colleague of yours has recently used the leastsquares regression formula on a spreadsheet to estimate the demand for holidays per year. The resulting formula was:

$$
y=640+40 x
$$

where y is the annual demand and x is the year. The data started with the number of holidays sold in 1993 and was identified in the formula as year 1. In each subsequent year the value of x increases by 1 so, for example, 1998 was year 6 . To obtain the weekly demand the result is divided by 25 , the number of weeks Happy Holidays operates in Xanadu.
Task 1
(a) Use the least-squares regression formula developed by your colleague to estimate the weekly demand for holidays in Xanadu for 2001.
(b) In preparation for a budget meeting with the financial controller, draft a brief note. Your note should identify three weaknesses of the least-squares regression formula in forecasting the weekly demand for holidays in Xanadu.

Data

The budget and actual costs for holidays to Xanadu for the 10 days ended 27 November 2000 is reproduced below.

Happy Holidays Ltd Cost Statement
10 days ended 27 November 2000

	Fixed budget $(£)$	Actual $(£)$	Variances $(£)$
Aircraft seats	18000	18600	600 A
Coach hire	5000	4700	300 F
Hotel rooms	14000	14200	200 A
Meals	4800	4600	200 F
Tour guide	1800	1700	100 F
Advertising	$\underline{2000}$	$\underline{1800}$	$\underline{200} \mathrm{~F}$
Total costs	$\underline{45600}$	$\underline{45600}$	$\underline{0}$

Key: A = adverse, $\mathrm{F}=$ favourable

The financial controller gives you the following additional information:
Cost and volume information

- each holiday lasts 10 days;
- meals and hotel rooms are provided for each of the 10 days;
- the airline charges $£ 450$ per return flight per passenger for each holiday but the airline will only sell seats at this reduced price if Happy Holidays purchases seats in blocks of 20;
- the costs of coach hire, the tour guide and advertising are fixed costs;
- the cost of meals was budgeted at $£ 12$ per tourist per day;
- the cost of a single room was budgeted at $£ 60$ per day;
- the cost of a double room was budgeted at $£ 70$ per day;
- 38 tourists travelled on the holiday requiring 17 double rooms and 4 single rooms;

Sales information

- the price of a holiday is $£ 250$ more if using a single room.

Task 2
Write a memo to the financial controller. Your memo should:
(a) take account of the cost and volume information to prepare a revised cost statement using flexible budgeting and identifying any variances;
(b) state and justify which of the two cost statements is more useful for management control of costs;
(c) identify three factors to be taken into account in deciding whether or not to investigate individual variances.

AAT Technicians Stage

Standard costing and variance analysis

SK Limited makes and sells a single product 'Jay' for which the standard cost is as follows:
$£$ per unit

Direct materials	4 kilograms at $£ 12.00$ per kg	48.00
Direct labour	5 hours at $£ 7.00$ per hour	35.00
Variable production overhead	5 hours at $£ 2.00$ per hour	10.00
Fixed production overhead	5 hours at $£ 10.00$ per hour	$\underline{50.00}$
		$\underline{143.00}$

The variable production overhead is deemed to vary with the hours worked.
Overhead is absorbed into production on the basis of standard hours of production and the normal volume of production for the period just ended was 20000 units (100 000 standard hours of production).

For the period under consideration, the actual results were:

Production of 'Jay'	$\mathbf{1 8 0 0 0}$ units $(£)$
Direct material used -76000 kg at a cost of	836000
Direct labour cost incurred - for 84000 hours worked	604800
Variable production overhead incurred	172000
Fixed production overhead incurred	1030000

You are required
(a) to calculate and show, by element of cost, the standard cost for the output for the period;
(2 marks)
(b) to calculate and list the relevant variances in a way which reconciles the standard cost with the actual cost (Note: Fixed production overhead sub-variances of capacity and volume efficiency (productivity) are not required);
(9 marks)
(c) to comment briefly on the usefulness to management of statements such as that given in your answer to (b) above.
(4 marks)
(Total 15 marks)
CIMA Stage 2 Cost Accounting
JK plc operates a chain of fast-food restaurants. The company uses a standard marginal costing system to monitor the costs incurred in its outlets. The standard cost of one of its most popular meals is as follows:

£ per meal

	$£$ per meal	
Ingredients	$(1.08$ units $)$	1.18
Labour	$(1.5$ minutes $)$	0.15
Variable conversion costs	$(1.5$ minutes $)$	0.06
The standard selling price of this meal is	1.99	

Question SM 18.1 Variance analysis and reconciliation of standard with actual cost

Question SM 18.2 Reconciliation of budgeted and actual contribution

In one of its outlets, which has budgeted sales and production activity level of 50000 such meals, the number of such meals that were produced and sold during April 2003 was 49 700. The actual cost data was as follows:

	$£$	
Ingredients	(55 000 units)	58450
Labour	(1 200 hours)	6800
Variable conversion costs	(1 200 hours)	3250
The actual revenue from the sale of the meals was	96480	

Required:
(a) Calculate
(i) the total budgeted contribution for April 2003;
(ii) the total actual contribution for April 2003.
(3 marks)
(b) Present a statement that reconciles the budgeted and actual contribution for April 2003. Show all variances to the nearest $£ 1$ and in as much detail as possible.
(17 marks)
(c) Explain why a marginal costing approach to variance analysis is more appropriate in environments such as that of JK plc, where there are a number of different items being produced and sold.
(5 marks)
(Total 25 marks)
CIMA Management Accounting - Performance Management
Question SM 18.3 A company manufactures two components in one of its factories. Material A is one Calculation of labour variances and actual material inputs working backwards from variances

The standard direct labour hours per unit of production and budgeted production quantities for a 13 -week period were:

	Standard direct labour hours	Budgeted production quantities
Component X	0.40 hours	36000 units
Component Y	0.56 hours	22000 units

The standard wage rate for all direct workers was $£ 5.00$ per hour.
Throughout the 13 -week period 53 direct workers were employed, working a standard 40-hour week.

The following actual information for the 13 -week period is available:

Production:

Component X, 35000 units
Component Y, 25000 units
Direct wages paid, $£ 138500$
Material A purchases, 47000 kilos costing $£ 85110$
Material A price variance, $£ 430$ F
Material A usage (component X), 33426 kilos
Material A usage variance (component X), $£ 320.32 \mathrm{~A}$
Required:
(a) Calculate the direct labour variances for the period;
(5 marks)
(b) Calculate the standard purchase price for material A for the period and the standard usage of material A per unit of production of component X. (8 marks)
(c) Describe the steps, and information, required to establish the material purchase quantity budget for material A for a period.
(7 marks)
(Total 20 marks)
ACCA Cost and Management Accounting 1

You have been provided with the following data for S plc for September:

Accounting method: Variances:	Absorption $(£)$	Marginal $(£)$
Selling price	1900 (A)	$1900(\mathrm{~A})$
Sales volume	4500 (A)	7500 (A)
Fixed overhead expenditure	2500 (F)	$2500(\mathrm{~F})$
Fixed overhead volume	1800 (A)	n / a

During September production and sales volumes were as follows:

	Sales	Production
Budget	10000	10000
Actual	9500	9700

Required:
(a) Calculate:
(i) the standard contribution per unit;
(ii) the standard profit per unit;
(iii) the actual fixed overhead cost total. (9 marks)
(b) Using the information presented above, explain why different variances are calculated depending upon the choice of marginal or absorption costing.
(8 marks)
(c) Explain the meaning of the fixed overhead volume variance and its usefulness to management.
(5 marks)
(d) Fixed overhead absorption rates are often calculated using a single measure of activity. It is suggested that fixed overhead costs should be attributed to cost units using multiple measures of activity (activity-based costing).

Explain 'activity-based costing' and how it may provide useful information to managers.
(Your answer should refer to both the setting of cost driver rates and subsequent overhead cost control.)
(8 marks)
(Total 30 marks)
CIMA Operational Cost Accounting Stage 2
JC Limited produces and sells one product only, Product J, the standard cost for which is as follows for one unit.

Direct material X - 10 kilograms at $£ 20$	200
Direct material Y - 5 litres at $£ 6$	30
Direct wages -5 hours at $£ 6$	30
Fixed production overhead	$\underline{50}$
Total standard cost	$\underline{910}$
Standard gross profit	$\underline{900}$
Standard selling price	

The fixed production overhead is based on an expected annual output of 10800 units produced at an even flow throughout the year; assume each calendar month is equal. Fixed production overhead is absorbed on direct labour hours.

Question SM 18.5

Calculation of

 labour, material and overheadvariances plus
appropriate
accounting entries

During April, the first month of the financial year, the following were the actual results for an actual production of 800 units.

Sales on credit:		320000
$\quad 800$ units at $£ 400$		
Direct materials:		
\quad X 7800 kilogrammes	159900	
\quad Y 4300 litres	23650	
Direct wages: 4200 hours	24150	
Fixed production overhead	$\underline{47000}$	
Gross profit		$\underline{\mathbf{2 5 4 7 3 0 0}}$

The material price variance is extracted at the time of receipt and the raw materials stores control is maintained at standard prices. The purchases, bought on credit, during the month of April were:

X 9000 kilograms at $£ 20.50$ per kg from K Limited
Y 5000 litres at $£ 5.50$ per litre from C plc.
Assume no opening stocks.
Wages owing for March brought forward were $£ 6000$.
Wages paid during April (net) $£ 20150$.
Deductions from wages owing to the Inland Revenue for PAYE and NI were $£ 5000$ and the wages accrued for April were $£ 5000$.

The fixed production overhead of $£ 47000$ was made up of expense creditors of $£ 33000$, none of which was paid in April, and depreciation of $£ 14000$.

The company operates an integrated accounting system.
You are required to
(a) (i) calculate price and usage variances for each material,
(ii) calculate labour rate and efficiency variances,
(iii) calculate fixed production overhead expenditure, efficiency and volume variances; (9 marks)
(b) show all the accounting entries in T accounts for the month of April - the work-in-progress account should be maintained at standard cost and each balance on the separate variance accounts is to be transferred to a Profit and Loss Account which you are also required to show;
(18 marks)
(c) explain the reason for the difference between the actual gross profit given in the question and the profit shown in your profit and loss account. (3 marks)
(Total 30 marks)
CIMA Stage 2 Cost Accounting

Part II

Solutions

An introduction to cost terms and concepts

Solutions to Chapter 2 questions

Solution SM 2.1

In Chapters 1 and 2 it was pointed out that a management accounting system should generate information to meet the following requirements:

1. to allocate costs between cost of goods sold and inventories for internal and external profit measurement and inventory valuation;
2. to provide relevant information to help managers to make better decisions;
3. to provide information for planning, control and performance measurement.

The question relates to how costs can be classified for meeting the planning, control and decision-making requirements.

Planning relates to the annual budgeting and long-term processes described in Chapter 15. Within these processes costs can be classified by:

- Behaviour - By classifying costs into fixed, variable, semi-fixed and semivariable categories the outcomes from different activity levels can be examined.
- Function - Functions are the different responsibility centres within the organisation. The budget is built up by the functional levels so that everyone in the organisation has a clear understanding of the role that their responsibility centre has in achieving the annual budget.
- Expense type - Classifying by expense types provides useful information on the nature, content and trend of different expense categories that is useful for planning how much should be authorised on spending within the different categories.
- Controllability - Classifying expenses by responsibility centres determines the individuals who are accountable for achieving the budget and who should thus be involved in setting the budget for the specific responsibility centres.
The management function of control consists of the measurement, reporting and the subsequent correction of performance in an attempt to ensure that a firm's objectives and plans are achieved. Within the control process costs can be classified by:
- Behaviour - Costs must be classified by behaviour for comparing actual and budgeted performance using flexible budgets. You should refer to Chapter 16 for a description of flexible budgeting.
- Function - For control, cost and revenues should be traced to the heads of the responsibility centres who are responsible for incurring them. For a description of this process you should refer to 'Responsibility accounting' in Chapter 2.
- Expense type - This will ensure that like items are compared with one another when budget and actual performance are compared and trends in revenues and different expense categories are monitored.
- Controllability - Costs and revenues must be assigned to the responsibility heads who are made accountable for them so that effective control can be exercised.
- Relevance - Attention should only be focused on those expense categories where there are significant deviations from the budget. Insignificant deviations are not relevant for cost control. See 'Management by exception' in Chapter 1 for a more detailed explanation of this point.

Decision-making involves choosing between alternative courses of actions. The following classifications are important for decision-making:

- By behaviour - Classification of costs by fixed, variable, semi-fixed and semivariable is necessary for predicting future costs for alternative courses of action. In particular, classification is necessary for cost-volume-profit analysis and identifying break-even levels. You should refer to Chapter 8 for a more detailed discussion of these topics.
- By expense type - This is necessary to identify how different cost categories will change as a result of pursuing alternative courses of action.
- By relevance - For decision-making it is necessary to distinguish between relevant and irrelevant costs and revenues for alternative courses of action. For a more detailed explanation you should refer to 'Relevant and Irrelevant Costs and Revenues' in Chapter 2.
It is apparent from the above discussion that costs should be classified in different ways for different purposes. This is explained in more detail in the section entitled 'Maintaining a cost database' in Chapter 2.

Solution SM 2.2

(a) A large proportion of non-manufacturing costs are of a discretionary nature. In respect of such costs, management has some significant range of discretion as to the amount it will budget for the particular activity in question. Examples of discretionary costs (sometimes called managed or programmed costs) include advertising, research and development, and training costs. There is no optimum relationship between inputs (as measured by the costs) and outputs (as measured by revenues or some other objective function) for these costs. Furthermore, they are not predetermined by some previous commitment. In effect, management can determine what quantity of service it wishes to purchase. For example, it can choose to spend small or large amounts on research and development or advertising. The great difficulty in controlling such costs is that there is no established method for determining the appropriate amount to be spent in particular periods.

For a description of fixed and variable costs see Chapter 2. Examples of fixed costs include depreciation of the factory building, supervisors' salaries and leasing charges. Examples of variable costs include direct materials, power and sales commissions.
(b) The $£ 500000$ is a sunk cost and cannot be avoided. It is therefore not a relevant cost for decision-making purposes. The project should be continued because the incremented/relevant benefits exceed the incremental/relevant costs:
(£000)

Incremental benefits	350
Incremental costs	200
Net incremental benefit	$\overline{150}$

(c) An opportunity cost is a cost that measures the opportunity lost or sacrificed when the choice of one course of action requires that an alternative course of action be given up. The following are examples of opportunity costs:
(i) If scarce resources such as machine hours are required for a special contract then the opportunity cost represents the lost profit that would have been earned from the alternative use of the machine hours.
(ii) If an employee is paid $£ 5$ per hour and is charged out at $£ 11$ per hour for committed work then, if that employee is redirected to other work, the lost contribution of $£ 6$ per hour represents the opportunity cost of the employee's time.

The CIMA terminology defines a notional cost as: 'A hypothetical cost taken into account in a particular situation to represent a benefit enjoyed by an entity in respect of which no actual cost is incurred.' The following are examples of notional costs:
(i) interest on capital to represent the notional cost of using an asset rather than investing the capital elsewhere;
(ii) including rent as a cost for premises owned by the company so as to represent the lost rent income resulting from using the premises for business purposes.

Solution SM 2.3

(a) See Chapter 2 for a description of opportunity costs. Out of pocket cost can be viewed as being equivalent to incremental or relevant costs as described in Chapter 2.
(b) Depreciation is not a relevant cost since it will be the same for both alternatives. It is assumed that tyres and miscellaneous represent the additional costs incurred in travelling to work. The relevant costs are:

Using the car to travel to work:
Petrol
(£)
-128
Tyres and miscellaneous $\frac{52}{180}$
Contribution from passenger $\frac{120}{60}$
Relevant cost $\quad \underline{\square}$
Using the train:
Relevant cost
(c)
Sales
Direct materials
Direct wages
Variable production overhea
Variable administration/selling
Total variable cost
Contribution
Fixed production overhead ${ }^{\text {a }}$
Fixed administration/selling

Profit
Notes

${ }^{1} 100 / 80 \times £ 2560000 \times 0.24$
${ }^{b} 100 / 80 \times £ 2560$
1000×0.07

Accounting for direct costs

Solutions to Chapter 3 questions

Solution SM 3.1

(a)

(i)		Y		Z	
		£		£	
	Time-based earnings	154	$(44 \times £ 3.50)$	180	$(40 \times £ 4.50)$
	Guaranteed minimum (80\%)	123.20		144	
	Piecework earnings	168	$(480 \times £ 0.35)$	136.50	$(390 \times £ 0.35)$
	Earnings	£168		£144	
(ii)	Time taken	44 hrs		40 hrs	
	Time allowed	56 hrs	$(480 \times 7 / 60)$	45.5 hrs	$(390 \times 7 / 60)$
	Time saved	12 hrs		5.5 hrs	
	Bonus hours	9 hrs		4.125 hrs	
	(75\% of time saved)				
	Hours paid	53 hrs		44.125 hrs	
	Earnings	$£ 185.50$		$£ 198.56$	

(b) Time rate bases are preferable when:
(i) quality is more important than quantity;
(ii) employees have little control over their output.

Solution SM 3.2

(a) For the answer to this question you should refer to the sections on categories of manufacturing cost in Chapter 2 and accounting treatment of various labour cost items in Chapter 3.
(b) Current system:

Total weekly wages $£ 960(6 \times £ 160)$
Weekly wage per employee
$£ 160$ ($£ 960 / 6$ employees)
Average output per employee
1000 units (6000 units/6)
Labour cost per unit of output
16p (£960/6000 units)
New system:
Average output per employee
1000 units (6600 units/6)
Weekly wage per employee
$£ 180(800 \times 16 p)+(200 \times 17 p)+(100 \times 18 p)$
£1080 ($£ 180 \times 6$)
Total weekly wages
Labour cost per unit of output
16.36 p ($£ 1080 / 6600$ units)

Note that the above calculations are based on the assumption that each individual produces the average output of 1,100 units per week. If this is not the case then total wages will differ slightly from the above figure.

With time-based remuneration systems, workers are paid for the number of hours attended at the basic wage rate. An additional premium over the base rate is paid for overtime. The merits of time-based systems are that they are simple to administer and easy to understand. The weekly wage is known in advance and does not fluctuate with changes in output. Time rate systems have a number of disadvantages. In particular, there is no motivation to increase output, and this can result in a greater need for supervision. Time-based systems are most
appropriate where the quality of the output is particularly important or where the workers have little influence over the volume of production.

With individual performance-based remuneration systems, wages paid are related to output. The merits of performance-based systems are that effort and efficiency are rewarded, and this generally results in higher wages, improved morale and the ability to attract efficient workers. In the above illustration, on average, each employee's wage increases by $£ 20$ per week (a 12.5% increase). The employer gains from increased production, higher sales revenue and a decrease in unit fixed costs. Labour cost per unit has increased in the above illustration, but it is likely that this will be compensated for by a lower fixed overhead cost per unit and additional sales revenue.
Individual performance-based remuneration systems suffer from the following disadvantages:
(i) Some workers may suffer a decline in wages. For example, a worker who produces 900 units per week would receive a weekly wage of $£ 145$ ($800 \times$ 16 p plus 100×17 p), a decline of $£ 15$ per week.
(ii) Performance-based systems are more complex and expensive to administer, and can result in complex negotiations and frequent disputes.
(iii) Quality of output might suffer.

Solution SM 3.3

(a) Labour turnover percentage

Number of employees leaving during the period (7)
Average total number of employees for the period (42)
= 16.7\%
(b) Possible reasons for the labour turnover include:
(i) Promotion either within or outside the firm.
(ii) Personal circumstances such as moving from the area, retirement, pregnancy.
(iii) Dissatisfaction with pay or working conditions.

The costs of labour turnover include leaving, recruitment and training costs. Leaving costs include the costs associated with completing the appropriate documentation and lost production if the employees cannot be immediately replaced. Recruitment costs result from the advertising, selection and engagement of new staff. Training costs include costs associated with lost production when training is being given, defective work and low productivity during the training period.
Labour turnover and associated costs can be reduced by ensuring that;
(i) pay and working conditions are satisfactory and comparable with alternative employers;
(ii) adequate training is provided;
(iii) an appropriate career structure exists.
(c) The time allowed for 114268 units is 5194 hours (114 268/22)

Efficiency ratio = Time allowed (standard hours)/actual hours

$$
=5194 \text { hours } / 4900 \text { hours }
$$

$$
=106 \%
$$

Therefore the labour rate is $£ 4.738$ per hour $(£ 4.60 \times 103 / 100)$
Standard cost $=£ 23892 \quad$ (5194 hours at $£ 4.60$)
Actual cost $\quad=£ 23216 \quad$ (4900 hours at $£ 4.738$)
Variance $=£ 676$ Favourable

Solution SM 3.4

(a) The accounting treatment of idle time and overtime are explained in the sections titled 'Labour cost accounting' and 'Accounting treatment of various labour cost items' in Chapter 3.
(b) (i) Wages paid (before share of group bonus):

Total hours	488
Normal hours	$444(12 \times 37)$
Overtime hours	$44(488-444)$
Basic wages	$£ 3660(488 \times £ 7.50)$
Overtime premium	$£ 110(44 \times £ 2.50)$
Total wages	$£ 3770$

(ii) Analysis of wages:

Direc workers:	
\quad Basic wages	$3240(432 \times £ 7.50)$
Overtime premium	
Indirect workers	
Group bonus	

Direct personnel

Direct cost
 £

Indirect personnel

121
$111(3 \times 37)$
$10(121-111)$
$£ 726(121 \times £ 6)$
$£ 20(20 \times £ 2)$
£746

Indirect cost

 £$420(56 \times £ 7.50)$
110
746
520
3240
1796
(iii)

Wages control account
Cost ledger control account 5036 Work in progress account 3240
Production overhead account 1796
5036
(iv)

Efficiency ratio $=\frac{\text { Expected hours for actual output }}{\text { Actual hours }}=$
$\frac{470}{(432+32)} \times 100=101.3 \%$

Solution SM 3.5

(a) (i) FIFO: 2100 boxes were purchased and 1500 boxes were issued to production, leaving a balance of 600 boxes. Actual closing stock is 500 boxes, resulting in a stock loss of 100 boxes. The closing stock will be valued at the latest purchase price: $£ 28$ per unit ($£ 14000 / 500$).
Closing stock valuation $=£ 14000(500 \times £ 28)$
Cost of sales (including stock loss) $=$
£60 400 (Total purchase cost (74 400) - (14 000)
(ii) LIFO:

Date	Issue	Cost $(£)$
$10 / 2$	400 units	15200 100 units at $£ 7200 / 200$
$\underline{3600}$		
$20 / 4$	400 units	$\underline{18800}$
	200 units at $£ 24000 / 600$	$\underline{8000}$
$25 / 6$	400 units at $£ 14000 / 500$	$\underline{22000}$
$30 / 6$	100 units (stock loss) at $£ 14000 / 500$	$\underline{2800}$
	Total cost of issues	$\underline{54800}$

$$
\begin{aligned}
\text { Closing stock }= & \text { Purchase cost }(£ 74000) \\
& - \text { Issue cost }(£ 54800) \\
= & £ 19600
\end{aligned}
$$

Note
(1) If the question does not require you to prepare a stores ledger account, you are recommended for the FIFO method to follow the approach shown in this answer. First calculate the closing stock in units. With the FIFO method the closing stock will be valued at the latest purchase prices. You can calculate the cost of sales as follows:

Cost of sales $=$ Opening stock + Purchases

- Closing stock
(iii)

Weighted average method

	Receipts		Issues			Closing balance		
Date	Quantity (boxes)	Total cost (£)	Date	Quantity (boxes)	Total cost (£)	Quantity (boxes)	Cost (£)	Weighted average issue price (£)
13/1	200	7200				200	7200	36.00
8/2	400	15200				600	22400	37.33
			10/2	$\begin{aligned} & 500 \text { at } \\ & £ 37.33 \end{aligned}$	18665	100	3735	37.33
11/3	600	24000				700	27735	39.62
12/4	400	14000				1100	41735	37.94
			20/4	$\begin{gathered} 600 \text { at } \\ £ 37.94 \end{gathered}$	22.764	500	18971	37.94
15/6	500	14000				1000	32971	32.97
			25/6	$\begin{gathered} 400 \text { at } \\ £ 32.97 \end{gathered}$	13188	600	19783	32.97
			30/6	$\begin{aligned} & 100 \text { at } \\ & £ 32.97 \end{aligned}$	3297	500	$\underline{16486}$	32.97
					$\underline{57914}$			

(b) Profit calculations

	FIFO $(£)$	LIFO $(£)$	Weighted average $(£)$
Sales	67200	67200	67200
Cost of sales and stock loss	(60400)	(54800)	(57914)
Other expenses	$\underline{(2300)}$	$\underline{(2300)}$	$\underline{(2300)}$
Profit	$\underline{4500}$	$\underline{10100}$	$\underline{6986}$

The purchase cost per box is $£ 36$ (Jan.), $£ 38$ (Feb.), $£ 40$ (March), $£ 35$ (April) and $£ 28$ (June).

The use of FIFO results in the lowest profit because prices are falling and the higher earlier prices are charged to production, whereas with LIFO the later and lower prices are charged to production. The use of the weighted average method results in a profit calculation between these two extremes. There are two items of concern regarding the performance of the business:
(i) There was a large purchase at the highest purchase price in March. This purchase could have been delayed until April so as to take advantage of the lower price.
(ii) The stock loss has cost over $£ 3000$. This should be investigated. A materials control procedure should be implemented.

Solution SM 3.6

(a) (i) Continuous stocktaking refers to a situation where a sample of store items are counted regularly on, say, a daily basis. Sufficient items should be checked each day so that during a year all items are checked at least once. The alternative system of stocktaking is a complete physical stockcount where all the stock items are counted at one point in time. Continuous stocktaking is preferable because production is not disrupted and any discrepancies and losses are relevant earlier.
(ii) A perpetual inventory system is a stock recording system whereby the balance is shown for a stock item after each receipt or issue. In a noncomputerised system the records are maintained on bin cards or stores ledger cards. A separate record is maintained for each item of materials in stores. Therefore the stock balance for each stores item is available at any point in time.
(iii) For an explanation of ABC inventory analysis see the section on control of stocks through classification in Chapter 3.
(b) For the answer to this question you should refer to Chapter 3 (sections on relevant costs for quantitative models under conditions of certainty and determining the economic order quantity).
(c) Normal control levels are the re-order level, minimum level and maximum level explained in the 'Key Examination Points' section.

$$
\begin{aligned}
\text { Reorder level }= & \text { Maximum usage } \\
& \times \text { Maximum lead time } \\
= & 800 \mathrm{~kg} \times 14 \text { days } \\
= & 11200 \mathrm{~kg} \\
\text { Minimum level }= & \text { Re-order level } \\
& - \text { Average usage in average lead time } \\
= & 11200 \mathrm{~kg}-(600 \mathrm{~kg} \times 12 \text { days }) \\
= & 4000 \mathrm{~kg} \\
\text { Maximum level }= & \text { Re-order level }+\mathrm{EOQ} \\
& - \text { Minimum usage in minimum lead time } \\
= & 11200 \mathrm{~kg}+12000 \mathrm{~kg} \\
& -(400 \mathrm{~kg} \times 10 \text { days }) \\
= & 19200 \mathrm{~kg}
\end{aligned}
$$

Solution SM 3.7

(a) Item A32: storage and ordering cost schedule

No of orders

per year	4	5	6	7	8	9	10	11	12
Order size (boxes)	1250	1000	833	714	625	556	500	455	417
Average stock (boxes)	625	500	417	357	313	278	250	228	208
	(£)	(£)	(£)	(£)	(£)	(£)	(£)	(£)	(£)
Storage costs (average stock									
$\times 25 \%$ of $£ 2$)	312.5	250.0	208.5	178.5	156.5	139.0	125.0	114.0	104.0
Ordering costs ($£ 12.5$ per order)	50.0	62.5	75.0	87.5	100.0	112.5	125.0	137.5	150.0
Total cost	£362.5	£312.5	£283.5	£266., 0	£256.5	£251.5	£250.0	£251.5	£254.0

(b) The number of orders which should be placed in a year to minimize costs is 10 .
(c)

$$
\mathrm{EOQ}=\sqrt{\left(\frac{2 D O}{H}\right)}
$$

where $D=$ total demand for period, $O=$ ordering cost per order, $H=$ holding cost per unit.
(d)

$$
\begin{aligned}
\mathrm{EOQ} & =\sqrt{\left(\frac{2 \times 5000 \times 12.5}{0.5}\right)} \\
& =500 \text { units }
\end{aligned}
$$

(e) The maximum saving that could be made if the authority process four orders per year would be:

$$
\frac{£ 362.50-£ 250}{£ 362.50}=31 \%
$$

(f) (i) Reducing the number of stock items by eliminating slow moving and obsolete stocks.
(ii) Standardization of stock items thus reducing the total number of items in stock.

Solution SM 3.8

The purchase cost is not constant per unit. It is therefore not possible to use the EOQ formula. Instead the following schedule of costs should be prepared:

Size of order	No. of orders	Evaluation of optimum order size Annual purchase cost (WI) $(£)$	Storage cost $(£)$	Admin. cost $(£)$	Total cost $(£)$
2400	1	$1728(£ 0.72)$	300	5	2033
1200	2	$1728(£ 0.72)$	150	10	1888
600	4	$1824(£ 0.76)$	75	20	1919
200	12	$1920(£ 0.80)$	25	60	2005
100	24	$1920(£ 0.80)$	12.50	120	2052.50

It is recommended that two orders be placed per year for 1200 units.

Calculation of cost $2(1200 \times £ 0.80-10 \%)$	$=£ 1728$
Add: Storage, average quantity held $600 \times £ 0.25$	$=$
Add two orders placed per annum $\times £ 5$	$=$$£ 1888$

Workings (W1) Annual demand of 2400 units \times unit purchase cost

Cost assignment for indirect costs

Solutions to Chapter 4 questions

Solution SM 4.1

(a) Calculation of department overhead rates

	$\begin{gathered} \text { Department } \\ P \\ (£) \end{gathered}$	$\begin{gathered} \text { Department } \\ \mathbf{Q} \\ (£) \end{gathered}$	$\begin{gathered} \text { Department } \\ R \\ (£) \end{gathered}$
Repairs and maintenance	42000	10000	10000
Depreciation	$17000{ }^{\text {a }}$	14000	9000
Consumable supplies	$4500^{\text {b }}$	2700	1800
Wage related costs	48250	26250	12500
Indirect labour	45000	27000	18000
Canteen/rest/smoke room	$15000{ }^{\text {c }}$	9000	6000
Business rates and insurance	$13000{ }^{\text {d }}$	10400	2600
	$\overline{184750}$	99350	55900
Direct labour hours	50000	30000	20000
Overhead absorption rate	£3.70	£3.31	$£ 3.00$

Notes:
The calculations for Department P are:
${ }^{a}$ Depreciation $=£ 170000 / £ 400000 \times £ 40000$.
${ }^{b}$ Consumable supplies $=50000 / 100000 \times £ 9000$.
${ }^{c}$ Canteen $=25 / 50 \times £ 30000$.
${ }^{d}$ Business rates insurance $=5000 / 10000 \times £ 26000$.
(b) Job 976: Sample quotation
(£)
Direct materials
Direct labour

$\mathrm{P}\left(30 \times £ 7.72^{a}\right)$	231.60
$\mathrm{Q}\left(10 \times £ 7.00^{b}\right)$	70.00
$\mathrm{R}\left(5 \times £ 5.00^{c}\right)$	25.00
$\mathrm{P}(30 \times £ 3.70)$	$\underline{111.00}$
$\mathrm{Q}(10 \times £ 3.31)$	33.10

Production cost
Selling, distribution and administration costs $(20 \% \times £ 1285.70)$
Total cost
(£)
800.00
326.60

$$
33.10
$$

$$
\mathrm{R}(5 \times £ 3.00) \quad 15.00
$$

159.10
1285.70
257.14
1542.84

Profit margin (20\% of selling price)
385.71
1928.55

Notes:
${ }^{a} £ 386$ 000/50 000.
${ }^{b} £ 210000 / 30000$.
c $£ 100$ 000/20 000 .
(c)
(£)

Direct materials	800.00
Direct labour	326.60
Prime cost	$\underline{1126.60}$
Overhead applied (125%)	$\underline{1408.25}$
Total cost	2534.85

The auditor's system results in a higher cost for this quotation. However, other jobs will be overcosted with the previous system. The auditor's system will result in the reporting of more accurate job costs with some job costs being higher, and others being lower, than the present system. For a more detailed answer see the section on plant-wide (blanket) overhead rates in Chapter 4.

Solution SM 4.2

(a)

Calculation of overhead absorption rates

	Machining (£000)	$\begin{aligned} & \text { Assembly } \\ & (£ 000) \end{aligned}$	Finishing (£000)	Stores (£000)	Maintenance (£000)
Allocated costs	600.00	250.00	150.00	100.00	80.00
Stores apportionment	40.00 (40\%)	30.00 (30\%)	20.00 (20\%)	(100.00)	10.00 (10\%)
Maintenance apportionment	49.50 (55\%)	18.00 (20\%)	18.00 (20\%)	4.50 (5\%) (90.00)
Stores apportionment ${ }^{\text {a }}$	a 2.00 (4/9)	1.50 (3/9)	1.00 (2/9)	(4.50)	
Total	691.50	299.50	189.00	-	-
Machine hours	50000				
Labour hours		30000	20000		
Overhead absorption rates ${ }^{\text {b }}$	13.83	9.98	9.45		

Notes
${ }^{\text {a }}$ Costs have become too small at this stage to justify apportioning 10% of the costs to the maintenance department. Therefore stores costs are apportioned in the ratio 40: 30: 20.
${ }^{\mathrm{b}}$ Machine hours are the predominant activity in the machine department whereas labour hours are the predominant activity in the assembly and finishing departments. Therefore machine hours are used as the allocation base in the machining department and direct labour hours are used for the assembly and finishing departments.
(b)

Quotation for Job XX 34

| | $(£)$ | (\pm) |
| :--- | ---: | ---: | ---: |
| Direct material | | 2400.00 |
| Direct labour | | 1500.00 |
| Overhead cost: | | |
| Machining (45 machine hours at $£ 13.83)$ | 622.35 | |
| Assembly (15 labour hours at $£ 9.98)$ | 149.70 | |
| Finishing (12 labour hours at $£ 9.45$ | $\underline{113.40}$ | $\underline{885.45}$ |
| Total cost | | $\underline{4785.45}$ |
| Selling price (Profit margin $=20 \%$ of selling price | | |
| \therefore selling price $=£ 4785.45 / 0.8)$ | 5981.81 | |

(c)

Overhead incurred Balance - over-recovery transferred to costing profit and loss account

Overhead control account
(£)
300000 WIP control (30700 hrs at $£ 9.98$)
6386

306386
(d) For the answer to this question see 'An illustration of the two-stage process for an ABC system' in Chapter 4. In particular, the answer should stress that cost centres will consist of activity cost centres rather than departmental centres. Separate cost driver rates would also be established for the service departments and the costs would be allocated to cost objects via cost driver rates rather than being reallocated to production departments and assigned within the production department rates. The answer should also stress that instead of using just two volume-based cost drivers (e.g. direct labour and machine hours) a variety of cost drivers would be used, including non-volume-based drivers such as number of set-ups and number of material issues. The answer could also stress that within the machining department a separate set-up activity centre might be established with costs being assigned using the number of set-ups as the cost driver. The current system includes the set-up costs within the machine hour overhead rate.

Solution SM 4.3

(a)
Allocated costs
Apportioned costs
Total departmental overheads
Overhead absorption rate

Department A
£217860
45150
$263010 \quad 58820$
£19.16 (£263 010/13 730)

Department B

£374 450
58820
433270
£26.89 (£433 270/16 110)
(b)

	Department A (£)	$\begin{gathered} \text { Department } \\ \text { B } \\ (£) \end{gathered}$	$\begin{gathered} \text { Department } \\ \text { C } \\ (£) \end{gathered}$
Allocated costs	219917	387181	103254
Apportionment of 70\% of Department C costs	a 32267	40011	(72 278)
Apportionment of 30% of Department C costs ${ }^{\text {b }}$	b 11555	19421	(30976)
Total departmental overheads	263739	446613	
Overheads charged to production	$261956{ }^{\text {c }}$	$455866{ }^{\text {d }}$	
Under/(over-recovery)	1783	(9 253)	

Notes
${ }^{\text {a }}$ Allocated on the basis of actual machine hours
${ }^{\mathrm{b}}$ Allocated on the basis of actual direct labour hours
c $£ 19.16 \times 13672$ actual machine hours
d $£ 26.89 \times 16953$ actual direct labour hours
(c) See Appendix 4.1 (Chapter 4) for the answer to this question.

Solution SM 4.4

(a) Year 1
(1) Budgeted machine hours

132500
(2) Budgeted fixed overheads
£2 411500 (132 $500 \times £ 18.20$)
(3) Actual machine hours

134200 ($£ 2442$ 440/£18.20)
(4) Fixed overheads absorbed
£2 442440
(5) Actual fixed overheads incurred
£2 317461
Over-absorption of fixed overheads $£ 124979(5-4)$
The section on 'Under- and over-recovery of fixed overheads' in Chapter 4 indicates that an under- or over-recovery will arise whenever actual activity or expenditure differs from budgeted activity or expenditure. Actual activity was 1700 hours in excess of budget and this will result in an over-recovery of fixed overheads of $£ 30940$. Actual overheads incurred were $£ 94039$ ($£ 2317461$ $£ 2411500)$ less than budget and this is the second factor explaining the overabsorption of fixed overheads.

Summary	(£)
Over-recovery due to actual expenditure being less than budgeted expenditure	94039
Over-recovery due to actual activity exceeding budgeted activity	30940
Total over-recovery of overhead for year 1	124979
Year 2	
(1) Budgeted machine hours (134 200×1.05)	140910
(2) Budgeted fixed overheads	£2 620926
(3) Fixed overhead rate ($£ 2620926 / 140900$ hours)	£18.60
(4) Actual fixed overheads incurred	£2 695721
(5) Fixed overheads absorbed (139 $260 \times £ 18.60$)	£2 590236
(6) Under-recovery of overhead for year $2(4-5)$	£105485
Analysis of under-recovery of overhead	(£)
Under-recovery due to actual activity being less than budgeted activity (139 260-140910) $\times £ 18.60$	30690
Under-recovery due to actual expenditure being greater than budgeted expenditure ($£ 2695721$ - $£ 2620926$	74795
Total under-recovery for the year	105485
Change in the overhead rate	
Change in the rate ($£ 18.60-£ 18.20) / £ 18.20$	$=+2.198 \%$
This can be analysed as follows:	
Increase in budgeted expenditure (£2 620926 - $£ 2411$ 500)/£2 411500	$=+8.684 \%$
Increase in budgeted activity (140 910 hours - 132500 hrs)/132 500	$=+6.347 \%$

The increase of 2.198% in the absorption rate is due to an expenditure increase of 8.684% in budgeted expenditure partly offset by an increase in budgeted activity of 6.347% over the 2 years.
Proof
(1.08684/1.06347) - $1=0.02198$ (2.198%)
(b) See 'Plant-wide (blanket) overhead rates' and 'Budgeted overhead rates' in Chapter 4 for the answers to these questions.

Solution SM 4.5

(a) (i) and (ii) An activity increase of 150 hours (1650 - 1500) results in an increase in total overheads of $£ 675$. It is assumed that the increase in total overheads is due entirely to the increase in variable overheads arising from an increase in activity. Therefore the variable overhead rate is $£ 4.50$ ($£ 675 / 150$ hours) per machine hour. The cost structure is as follows:

1. Activity level (hours)	1500	1650	2000
2. Variable overheads at $£ 4.50$ per hour	$£ 6750$	$£ 7425$	$£ 9000$
3. Total overheads	$£ 25650$	$£ 26325$	$£ 27900$
4. Fixed overheads $(3-2)$	$£ 18900$	$£ 18900$	$£ 18900$

(iii) The fixed overhead rate is $£ 10.50$ ($£ 15-£ 4.50$ variable rate)
normal activity $=$ fixed overheads ($£ 18900$)/fixed overhead rate ($£ 10.50$)
$=1800$ machine hours
(iv) Under-absorption $=100$ machine hours (1800 - 1700) at $£ 10.50=£ 1050$
(b) (i) A machine hour rate is recommended for the machine department because most of the overheads (e.g. depreciation and maintenance) are likely to be related to machine hours. For non-machine labour-intensive departments, such as the finishing department, overheads are likely to be related to direct labour hours rather than machine hours. Overheads are therefore charged to jobs performed in the finishing department using the direct labour hour method of recovery.
Calculation of overhead rates

Production overhead	£35 280	£12480
Machine hours	11200	
Direct labour hours		7800
Machine hour overhead rate	$£ 3.15$	
Direct labour hour overhead rate		$£ 1.60$
	Machining department	Finishing department
Direct materials	(£)	(£)
$(189 \times 1.1 \times £ 2.35 / 0.9)$	542.85	-
Direct labour ${ }^{\text {a }}$		
25 hours $\times £ 4$	100.00	
28 hours $\times £ 4$		112.00
Production overhead		
46 machine hours at $£ 3.15$	144.90	
28 direct labour hours at $£ 1.60$		44.80
	787.75	156.80
Total cost of job $=£ 944.55$ (£787.75		

Note
${ }^{a}$ Overtime premiums are charged to overheads, and are therefore not included in the above job cost.

Solution SM 4.6

(a) (i)

(a) (i)	Machining (£)	Finishing $(£)$	Assembly (£)	Materials handling (£)	Inspection (£)
Initial cost	400000	200000	100000	100000	50000
Reapportion: Materials					
Materials handling	30000	25000	35000	(100 000)	10000
	430000	225000	135000	-	60000
Inspection	12000 (20\%)	18000 (30\%)	27000 (45\%)	3000 (5\%)	(60000)
	442000	243000	162000	3000	-
Materials					
handling	900 (30\%)	750 (25\%)	1050 (45\%)	(3000)	300 (10\%)
	442900	243750	163050	-	300
Inspection	60 (20\%)	-90(30\%)	135 (45\%)	15(5\%)	(300)
	442960	243840	163185	(15)	
	5	4	6		
	$\underline{\underline{442965}}$	$\underline{\underline{243844}}$	$\underline{\underline{163191}}$		

(ii) Let

$$
\begin{aligned}
& x=\text { material handling } \\
& y=\text { inspection } \\
& x=100000+0.05 y \\
& y=50000+0.1 x
\end{aligned}
$$

Rearranging the above equations:

$$
\begin{align*}
& x-0.05 y=100000 \tag{1}\\
& -0.1 x+y=50000 \tag{2}
\end{align*}
$$

Multiply equation (1) by 1 and equation (2) by 10:

$$
\begin{aligned}
& x-0.05 y=100000 \\
& -x+10 y=500000
\end{aligned}
$$

Adding the above equations:

$$
\begin{aligned}
9.95 y & =600000 \\
y & =60301
\end{aligned}
$$

Substituting for y in equation (1):

$$
\begin{aligned}
x-0.05 \times 60301 & =100000 \\
x & =103015
\end{aligned}
$$

Apportioning the values of x and y to the production departments in the agreed percentages:

		Machining $(\boldsymbol{£})$	Finishing $(\boldsymbol{£})$	Assembly $(\boldsymbol{(})$
Initial cost		400000	200000	100000
(x) Materials handling	(0.3)	$30905(0.25)$	$25754(0.35)$	36055
(y) Inspection	(0.2)	$\underline{12060}(0.3)$	$\underline{18090}(0.45)$	$\underline{24136}$
		$\underline{442965}$	$\underline{163191}$	

(b) Reapportioning production service department costs is necessary to compute product costs for stock valuation purposes in order to meet the financial accounting requirements. However, it is questionable whether arbitrary apportionments of fixed overhead costs provides useful information for decision-making. Such apportionments are made to meet stock valuation requirements, and they are inappropriate for decision-making, cost control and performance reporting.

An alternative treatment would be to adopt a variable costing system and treat fixed overheads as period costs. This would eliminate the need to reapportion service department fixed costs. A more recent suggestion is to trace support/service department costs to products using an activity-based costing system (ABCS). For a description of ABCS you should refer to Chapter 13.
(c) For the answer to this question see 'Under- and over-recovery of overheads'.

Accounting entries for a job costing system

Solutions to Chapter 5 questions

Solution SM 5.1

(a)

Stores ledger control account

(£)

Opening Balance	60140	Finished Goods Control A/c (1)	95200
Cost Ledger Control A/c	93106	Closing Balance	58046
	$\underline{153246}$		$\underline{153246}$
	\underline{y}		

Production wages control account
(£)
Cost Ledger Control A/c (2)
121603 Finished Goods Control A/c
Production Overhead
\quad Control A/c (2)
(indirect wages) 87480 34123
(indirect wages)
121603
121603

Production overhead control account
(£)

Cost Ledger Control A/c Production Wages Control A/c (2)	116202	Finished Goods Control A/c (3) Profit and Loss A/c - Fixed Overhead (3)	61236
Profit and Loss A/c - over absorbed variable production overhead (3)	34123	1106	$\underline{151431}$

Finished goods control account
(£)
Opening Balance
147890
Stores Ledger Control A/c 95200
Production Wages Control A/c 87480
Variable Production Cost of Sales A/c (balance)
(£)

Production Overhead

Control A/c \quad| 61236 |
| ---: |
| 391806 |

391806

Workings

(1)

	$\mathbf{(K g)}$	$\mathbf{(£)}$
Opening stock	540	7663
Purchases	1100	15840
	$\underline{1640}$	$\underline{23503}$

Issue price $£ 23503 / 1640=£ 14.33$ per kg
Cost of material issues: Material $Y=£ 14.33 \times 1164 \mathrm{~kg}=£ 16680$
Other materials $\quad=\frac{£ 78520}{£ 95200}$
(2) Analysis of wages

Direct workers productive time (11 $664 \times £ 7.50$)

Direct labour $(£)$	Indirect labour $(£)$
87480	

Direct workers unproductive time at $£ 7.50$
(12 215 hours - 11664)
4132.50

Overtime premium (1 075 hours $\times £ 2.50$)
2687.50

Indirect workers basic time (4655 hours $\times £ 5.70$)
26533.50

Indirect workers overtime premium (405 hours $\times £ 1.90$)
769.50
$87480 \quad 34123.00$
Total wages for the period $£ 121603(£ 87480+£ 34123)$
(3) Analysis of overheads

Production overheads $=£ 150325(£ 116202+£ 34123)$
Fixed overheads $=90195(60 \% \times £ 150325)$
Variable overheads $=60130(40 \% \times £ 150325)$
Variable overheads absorbed $=61236$ (70% of the direct labour cost of $£ 87480$)
Over-absorbed overheads $=1106$ ($£ 61236-£ 60130$)
Note that with a marginal costing system fixed overheads are charged directly to the profit and loss account and not included in the product costs. Therefore they are not included in the finished stocks.
(b) See working (2) in part (a) for the answer to this question.
(c)

Sales

Less: Variable production cost of sales
Variable selling and administration overheads
Over-absorbed variable production overheads
Contribution
Less: Fixed production overheads
Fixed selling and administration overheads
Net profit
(£) (£)
479462
241619
38575
(1 106) 279088
200374
90195
74360
164655

35819

Solution SM 5.2

(a)

Raw material stock control account
(£)
Opening balance
Creditors
Bank/Creditors
Wages (2)
pening balance
Raw materials
$\begin{aligned} 72460 & \text { Finished goods (1) } \\ 631220 & \text { Closing balance }\end{aligned}$
631220 Closing balance

Production overhead control account
(£)

549630	Finished goods (3)	734000
192970	P \& L - under absorption (3)	8600
742600		742600

Finished goods stock control account
(£)

183560	Production cost of sales (6)	1887200
608400	Closing balance	225960

Wages (5)
Production overhead

Workings

(1) Raw materials issues:

Product A: 41000 units at $£ 7.20$ per unit $=£ 295200$
Product B: 27000 units at $£ 11.60$ per unit $=£ 313200$
$£ 608400$
(2) Indirect labour charged to production overhead:

3250 overtime premium hours at $£ 2$ per hour $=£ 6500+£ 186470=£ 192970$
(3) Production overhead absorbed charged to finished goods:

Product A: 41000×1 hour $\times £ 10=£ 410000$
Product B: 27000×1.2 hours $\times £ 10=£ 324000$
$£ 734000$
Production overhead under-absorbed $=£ 549630+£ 192970-£ 734000$
$=£ 8600$
(4) Direct labour charge to finished goods stock:

Product A: 41000×1 hour $\times £ 8=£ 328000$
Product B: 27000×1.2 hours $\times £ 8=£ 259200$
$£ 587200$
(5) Production cost of sales:

Cost of product $\mathrm{A}=£ 7.20$ materials $+£ 8$ direct labour $+£ 10$ overhead $=$ $£ 25.20$
Cost of product $B=£ 11.60$ materials $+£ 9.60$ direct labour (1.2 hours $\times £ 8$)
$+£ 12$ overhead $(1.2$ hours $\times £ 10)=£ 33.20$
Cost of sales: Product A $=38000$ units $\times £ 25.20$ per unit $=£ 957600$
Product $B=28000$ units $\times £ 33.20$ per unit $=£ 929600$ £1 887200
(6) Valuation of closing stocks of finished goods:

Product A: 6200 units at $£ 25.20=£ 156240$
Product B: 2100 units at $£ 33.20=\underline{£ 69720}$
$£ 225960$
The above figure can also be derived from the balance of the account.
(b)

	Product A $(£ 000)$	Product B $(£ 000)$	Total $(£ 000)$
Sales	1330	1092	2422
Production cost of sales	$\underline{(957.6)}$	$(\underline{929.6)}$	$(\underline{(1887.2)}$
Gross profit (before adjustment)	372.4	162.4	534.8
Under absorbed production overheads			$\underline{(8.6)}$
Gross profit (after adjustment)			526.2
Non-production overheads		$\underline{(394.7)}$	
Net profit		$\underline{131.5}$	

(c) With a marginal costing system fixed production overheads are charged directly against profits whereas with an absorption costing system they are included in the product costs and therefore included in the stock valuations. This means that with absorption costing cost of sales and profits will be affected by the changes in stocks. An increase in stocks will result in some of the fixed overheads incurred during the period being deferred to future periods whereas with a decrease in stocks the opposite situation will apply. Thus, absorption costing profits will be higher than marginal costing profits when stocks increase and lower when stocks decrease. For a more detailed explanation of the difference in profits you should refer to 'Variable costing and absorption costing: a comparison of their impact on profit' in Chapter 8.

In this question there is a stock increase of 3000 units for product A resulting in absorption costing profits exceeding marginal costing profits by $£ 20400$ (3000 units at $£ 6.80$ per unit fixed overhead). Conversely, for product B there is a 1000 units stock reduction resulting in marginal costing profits exceeding the absorption costing profits by $£ 8160$ (1000 units at $£ 8.16$ per unit fixed overhead). The overall impact is that absorption costing profits exceed marginal costing profits by $£ 12240$.

Solution SM 5.3

(a) (i) The overheads apportioned to Contract ABC are as follows: Stores operations $=£ 1.56$ million $\times(£ 6.4$ million $\times 6$ months $) /(76.2$ million $\times 53$ months) $=£ 148000$ Contract general management $=£ 1.22$ million $\times(£ 1.017$ million/ 9.762 million $)$ $=£ 127000$
Transport $=£ 1.37$ million $\times(23 \mathrm{~km} \times 6$ months $) /(16 \mathrm{~km} \times 53$ months $)$ $=£ 223000$
General administration $=£ 4.25$ million $\times(6$ months $/ 53$ months $)$ $=£ 481000$
Total overheads apportioned to Contract ABC $=£ 979000$
(ii)

Costs to 1.12.01
Additional costs from 1.12.01 to 31.5.02:

Raw materials	1.456		
Direct labour	1.017		
Overheads	$\underline{0.979}$		3.452
Costs to date			4.515
Costs to complete		$\underline{0.937}$	
		5.452	
Total costs		$\underline{6.400}$	
Contract value		$\underline{0.948}$	

Direct labour $\quad 1.017$
Overheads

Estimated contract profit 0.948

Amount of profit taken to be included in the profit statement for the period:
[Value of work certified ($£ 5.18$ million)/Contract value ($£ 6.4$ million)] \times $£ 0.948$ million $=£ 0.767$ million

Note that with some questions on contract costing the profit to date is computed by deducting the cost of work certified from the value of work certified. However, the cost of work not yet certified or the cost of work certified is not given in the question so it is not possible to adopt this approach.
(b) Service costing represents a costing system where the cost objects are the cost of services rather than the cost of products. It is applied in the service sector but can be applied in other sectors where the objective is to calculate the cost of the service departments. The key factors to consider are as follows:

- determining which services are to be costed within the stores department (e.g. materials receiving, materials handling, etc.);
- establishing whether total costs or unit costs should be calculated. In the latter situation the output should be measurable to calculate the cost per unit of output;
- establishing how costs should be classified in determining the total costs of services (e.g. determining the different categories of direct and indirect costs to be reported);
- deciding the key financial and non-financial performance measures to be reported.

Solution SM 5.4

(a)

Contract accounts (for the previous year)

	$\begin{aligned} & \text { MNO } \\ & (£ 000) \end{aligned}$	$\begin{gathered} \text { PQR } \\ (£ 000) \end{gathered}$	$\begin{gathered} \text { STU } \\ (£ 000) \end{gathered}$		$\begin{aligned} & \text { MNO } \\ & (£ 000) \end{aligned}$	$\begin{gathered} \text { PQR } \\ (£ 000) \end{gathered}$	$\begin{gathered} \text { STU } \\ (£ 000) \end{gathered}$
Materials on site b/fwd			25	Wages accrued b/fwd		2	
Plant on site b/fwd		35	170	Plant control a/c		8	
Materials control a/c	40	99	180	Materials on site c/fwd	8		
Wages control a/c	20	47	110	Plant on site c/fwd	70		110
Subcontractors a/c			35	Prepayment c/fwd			15
Salaries	6	20	25	Cost of work not certified			
Plant control a/c	90	15		c/fwd			26
Wages accrued c/fwd		5		Cost of work certified			
Apportionment of				(balance) ${ }^{\text {c }}$	82	221	416
construction services ${ }^{a}$	4	10	22				
	160	231	567		160	231	567
Cost of work certified b/fwd	d 82	221	416	Attributable sales revenue	82	200	530
Profit taken this period ${ }^{b}$			114	Loss taken ${ }^{\text {b }}$		21	
	82	221	530		82	221	530
Cost of work not certified b/fwd			26	Wages accrued b/fwd		5	
Materials on site b/fwd	8						
Plant on site b/fwd	70		110				
Prepayment b/fwd			15				

Notes

${ }^{a}$ Costs incurred by construction services department:

	$(\mathbf{(0 0 0})$
Plant depreciation $(12-5)$	7
Salaries	21
Wages paid	$\underline{8}$
	$\underline{36}$

Wages incurred by each department are:
($£ 000$)
MNO 20
PQR
$50(47+5-2)$
STU

110
$\overline{180}$

The costs apportioned to each contract are:

$$
(£ 000)
$$

MNO

$$
4\left(\frac{[20]}{180} \times £ 36\right)
$$

PQR

$$
10\left(\frac{[50]}{180} \times £ 36\right)
$$

STU

$$
\frac{22}{\underline{36}}\left(\frac{110}{180} \times £ 36\right)
$$

${ }^{\mathrm{b}}$ See (b) (i) for calculation.
${ }^{\text {c Profit taken plus cost of sales for the current period or cost of sales less to }}$ date.
(b) (i) Contract MNO: Nil.

Contract $P Q R$:

Contract STU:
Cost of work certified
Cost of work not yet certified
Estimated costs to complete
Estimated cost of contract
Contract price
Anticipated profit
(£)
786000
26000
138000
950000
1100000
150000
The profit taken to date is calculated using the following formula:
cash received to date ($£ 950000$)
contract price ($£ 1100000) \times$ estimated profit from the contract $(£ 150000)$
$=£ 129545$ (say $£ 129000$)
The profit taken for the current period is $£ 114000$, consisting of the profit to date of $£ 129000$ less the profit previously transferred to the profit and loss account of $£ 15000$.
(ii) Contract MNO: This contract is at a very early stage, and it is unlikely that the outcome can be reasonably foreseen. It is therefore prudent not to anticipate any profit at this stage.
Contract PQR: This contract has incurred a loss, and, applying the prudence concept, this loss should be written off as soon as it is incurred.
Contract STU: Applying the prudence concept, a proportion of the profit

$$
\frac{\text { cash received to date }}{\text { contract price }}
$$

is recognized in this period. The proportion of profit that is recognized is arbitrary and very much a matter of opinion. Alternative apportionments applying the concept of prudence could have been applied.

Process costing

Solutions to Chapter 6 questions

Solution SM 6.1

Solution SM 6.2

(a) Units completed $=8250-$ Closing WIP $(1600)=6650$

	Calculation of number of equivalent Completed units	Closing produced WIP	Total equivalent units		
	6650	1600	8250		
Previous process	6650	1600	8250		
Materials	6650	$960(60 \%)$	7610		
Labour and overhead	Total equivalent units				Cost per unit
	(£)		$(£)$		
	453750	8250	55		
Previous process cost	24750	8250	3		
Materials	350060	7610	$\underline{46}$		
Labour and overheads			$\underline{104}$		

(c)

Process account

Units	$(£)$		Units	$(\boldsymbol{£})$
		Finished goods a	6650	691600
8250	453750	Closing WIP b	1600	136960
	24750			
$\overline{8250}$	$\overline{350060}$		$\overline{828560}$	

Note
${ }^{a}$ Cost of completed production $=6650$ units $\times £ 104=£ 691600$
b (£)
Closing WIP: Previous process cost $(1600 \times £ 55)=88000$
Materials $(1600 \times £ 3)=4800$
Labour and overhead $(960 \times £ 46)=44160$
136960
(d) See the introduction to Chapter 7 and 'Accounting for by-products' in Chapter 7 for the answer to this question.

Solution SM 6.3

(a)

Units

Input:
$\begin{array}{lr}\text { Opening WIP } & 12000 \\ \text { Transferred from process 1 } & \underline{95000} \\ & \underline{107000}\end{array}$
Output:
Closing WIP 10000
Normal loss 200
Completed units (balance) $\quad \frac{96800}{107000}$

Statement of completed production and calculation of cost per unit (Process 2)

	Opening WIP (£)	Current $\operatorname{cost}(£)$	Total $\operatorname{cost}(£)$	Completed units	Closing WIP	Total equiv. units	Cost pe unit (£)	WIP (£)
Previous								
process cost	13440	107790	121230	96800	10000	106800	1.135	11350
Materials added	4970	44000	48970	96800	9000	105800	0.463	4167
Conversion costs	3120	51480	54600	96800	7000	103800	0.526	3682
	21530	203270	224800				2.124	19199
				Completed units (96800 $\times £ 2.124$)				205601
								224800

Note that the above answer is based on the short-cut approach described in Appendix 6.1.
(b)

| | Process 2 Account
 $(£)$ | | | | Units |
| :--- | ---: | ---: | :--- | ---: | ---: |$\quad(\mathbf{£})$

(c) If losses are not expected to occur the loss would be abnormal. Because abnormal losses are not an inherent part of the production process and arise from inefficiencies they are not included in the process costs. Instead, they are charged with their full share of production costs and removed (credited) from the process account and reported separately as an abnormal loss. The abnormal loss is treated as a period cost and written off in the profit and loss account.
(d) Workings would be different because FIFO assumes that the opening WIP is the first group of units to be completed during the current period. The opening WIP is charged separately to completed production, and the cost per unit is based only on current period costs and production for the current period. This requires that opening WIP equivalent units are deducted from completed units to derive current period equivalent units. The cost per unit is derived from dividing current period costs by current period total equivalent units.

Solution SM 6.4

(a) Fully complete production $=$ Input (36000) - Closing WIP (8000)

$$
=28000 \mathrm{~kg}
$$

Normal loss
$=2800(10 \% \times 28000 \mathrm{~kg})$
Abnormal loss $\quad=800$ (Actual loss (3600) - 2800)
Good output
(b)

		Completed units $(£)$	Normal loss	Abnormal loss	Cosing WIP	Total equiv. units	Cost per unit $(£)$
Previous process cost	166000	24400	2800	800	8000	36000	4.61111
Conversion cost	$\underline{73000}$	24400	2800	800	4000	32000	$\underline{2.28125}$
	$\underline{239000}$						$\underline{6.89236}$

Completed units $(24400 \times £ 6.89236)$	168174		
Add normal loss $(2800 \times £ 6.89236)$	19298		
			187472
Abnormal loss $(800 \times £ 6.89236)$		5514	
WIP: Previous process cost	$(8000 \times £ 4.61111)$	36889	
	$(4000 \times £ 2.28125)$	-9125	
			$\underline{46014}$

The above computations assume that losses are detected at the end of the process when the units are fully complete. Therefore none of the normal loss is allocated to partly completed units (WIP). There is an argument for allocating the normal loss between completed units and the abnormal loss (see the section on equivalent units and abnormal losses in the appendix to Chapter 6) but it is unlikely to make a significant difference to the answer. Also examination questions are unlikely to require such sophisticated answers.

An alternative approach is to adopt the short-cut method described in Chapter 6. This method allocates the normal loss between completed units, WIP and the abnormal loss. Because the units actually lost are fully complete it is likely that losses are detected on completion. Therefore the short-cut method is not theoretically correct. Nevertheless the computations suggest that it was the examiner's intention that the question should be answered using the shortcut method. The revised answer is as follows:

		istillat	cess account		
	(kg)	(£)		(kg)	(£)
Input from mixing	36000	166000	Finished goods	24400	183000
Labour		43800	Abnormal loss	800	6000
Overheads		29200	Normal loss	2800	-
			Closing WIP	8000	50000
	$\overline{36000}$	239000		36000	239000

(c) If the scrapped production had a resale value the resale value would be credited to the process account (thus reducing the cost of the process account). The accounting entries would be as follows:
Dr Cash
Cr Process Account (with sales value of normal loss)
Cr Abnormal Loss Account (with sales value of abnormal loss)

Solution SM 6.5

(a) Expected output from an input of 39300 sheets:

Less 1\% rejects
Expected output after rejects

3144000 cans (39300×80)
31440 cans
3112560 cans

The normal loss arising from the rejects (31440 cans) is sold at $£ 0.26$ per kg . It is therefore necessary to express the rejects in terms of kilos of metal. Each sheet weighs 2 kilos but wastage in the form of offcuts is 2% of input. Therefore the total weight of 80 cans is $1.96 \mathrm{~kg}(0.98 \times 2 \mathrm{~kg})$ and the weight of each can is 0.0245 kilos ($1.96 \mathrm{~kg} / 80$ cans). The weight of the normal loss arising from the rejects is 770.28 kg ($31440 \times 0.0245 \mathrm{~kg}$). The normal loss resulting from the offcuts is 1572 kg ($39300 \times 2 \mathrm{~kg} \times 0.02$). Hence the total weight of the normal loss is 2342.28 kilos ($1572 \mathrm{~kg}+770.28 \mathrm{~kg}$), with an expected sales value of $£ 609$ (2342.28 kg $\times £ 0.26$).

Process account

(£)

Direct materials (39 $300 \times £ 2.50$)

Direct labour and overheads
$\begin{array}{r}33087 \\ \hline 131337\end{array}$
Finished goods
$98250 \quad$ (3100760 cans $\times £ 0.042^{a}$) 130232
Normal loss
Abnormal loss
(11 $800 \mathrm{~kg}^{b}$ at $£ 0.042^{a}$)

496
131337

Abnormal loss account
(£)
(£)
496 Sale proceeds ${ }^{c} \quad 75$
Profit and loss account
421
496

Notes

${ }^{a}$ Cost per unit $=\frac{£ 98250+£ 33087-£ 609}{\text { expected output }(3112560 \text { cans })}=£ 0.042$ per can
${ }^{b}$ Expected output (3112 560) - actual output (3 100760 cans) $=11800$ cans
${ }^{c}$ Abnormal loss $=11800$ cans (3112560-3100760)
This will yield 289.1 kilos (11800×0.0245 kilos) of metal with a sales value of $£ 75(289.1 \times £ 0.26)$.
(b) (i) See 'Opening and closing work in progress' in Chapter 6 for the answer to this question.
(ii) See 'Weighted average method' and 'First in, first out method' in Chapter 6 for the answer to this question.

Solution SM 6.6

(a)

Production statement

Input:	Units
Opening WIP	20000
Transfer from previous process	$\underline{180000}$
	$\underline{200000}$

Output:

Closing WIP	18000
Abnormal loss	60
Completed units (balance)	$\underline{181940}$
	$\underline{200000}$

Statement of equivalent production and calculation of cost of completed production and WIP

	Current costs (£)	Completed units less opening WIP equivalent units	Abnormal loss	Closing WIP equivalent units	$\begin{gathered} \text { Current } \\ \text { total } \\ \text { equivalent } \\ \text { units } \end{gathered}$	Cost per unit (£)
Previous process						
Materials	110520	167940	60	16200	184200	0.60
Conversion cost	76506	173940	60	12600	186600	0.41
	581226					3.20

(£)

(£)
Cost of completed production: Opening WIP (given) 55160
Previous process cost $(161940 \times £ 2.19) 354649$
Materials ($167940 \times £ 0.60$) 100764
Conversion costs (173940×£0.41) 71315

Cost of closing WIP:
Previous process cost $(18000 \times £ 2.19) 39420$
Materials (16200×£0.60) 9720
Conversion costs (12600×£0.41) 5166
54306
Value of abnormal loss $(60 \times £ 3.20)$
192

Process 3 account
(£)
Opening WIP
Transfer from process 2
Materials
Conversion costs

55160
394200
110520
76506 Closing WIP stock

Transfer to finished goods
581888
Abnormal loss 192
54306
636386
(b) Normal losses are unavoidable losses that are expected to occur under efficient operating conditions. They are an expected production cost and should be absorbed by the completed production whereas abnormal losses are not included in the process costs but are removed from the appropriate process account and reported separately as an abnormal loss. See 'Losses in process and partially completed units' in the appendix to Chapter 6 for a more detailed explanation of the treatment of normal losses.
(c) If the weighted average method is used, both the units and value of WIP are merged with current period costs and production to calculate the average cost per unit. The weighted average cost per unit is then applied to all completed units, any abnormal losses and closing WIP equivalent units. In contrast, with the FIFO method the opening WIP is assumed to be the first group of units completed during the current period. The opening WIP is charged separately to completed production, and the cost per unit is based only on current costs and production for the period. The closing WIP is assumed to come from the new units that have been started during the period.

Solution SM 6.7

(a) It is assumed that the normal loss occurs at the start of the process and should be allocated to completed production and closing WIP. It is also assumed that process 2 conversion costs are not incurred when losses occur. Therefore losses should not be allocated to conversion costs.

Statement of input and output (units)			
	Input		Output
	1200	Completed output	105400
Opening WIP		Normal loss $(5 \% \times 112000)$	1600
Transferred from Process 1	112000	WIP	500
		Abnormal loss (balance)	$\underline{600}$
	$\underline{113200}$		$\underline{113200}$

Since the loss occurs at the start of the process it should be allocated over all units that have reached this point. Thus the normal loss should be allocated to all units of output. This can be achieved by adopting the short-cut method described in Chapter 6 whereby the normal loss is not included in the unit cost statement.

Calculation of cost per unit and cost of completed production (FIFO method)

Previous process

cost	187704						
Materials	47972						
	235676	104 200(105	- 1200)	600	$\begin{aligned} & 1600 \\ & 1200 \end{aligned}$	$\begin{aligned} & 106400 \\ & 106000 \end{aligned}$	02.215
Conversion costs	$63176104800(105400-600)$						00.596
	298852						2.811
Cost of completed production:					(£)		(£)
Opening WIP (given)					3009		
Previous process cost and materials (104 $200 \times £ 2.215$)					230803		
Conversion cost (104 $800 \times £ 0.596$)					62461		296273
Abnormal Loss ($600 \times £ 2.215$)							1329
Closing WIP:							
Previous process cost and material			$(1600 \times £$.215)	3544		
Conversion costs (1200 $\times £ 0.596$)					715		4259
							301861
Process 2 account							
Opening WIP		3009	Transfer	o finish	goods		296273
Transfers from Process 1		187704	Abnorma	loss			1329
Raw materials		47972	Closing				4259
Conversion costs		63176					
		$\underline{301861}$					301861

(b) If the loss occurs at the end of the process then the normal loss should only be charged to those units that have reached the end of the process. In other words, the cost of normal losses should not be allocated to closing WIP. To meet this requirement a separate column for normal losses is incorporated into the unit cost statement and the normal loss equivalent units are included in the calculation of total equivalent units. The cost of the normal loss should be calculated and added to the cost of completed production. For an illustration of the approach see 'Losses in process and partially completed units' in the appendix to Chapter 6.

Joint and by-product costing

Solutions to Chapter 7 questions

Solution SM 7.1

(a) Normal loss (toxic waste) $=50 \mathrm{~kg}$ per 1000 kg of input (i.e. 5\%)

Actual input $=10000 \mathrm{~kg}$
Abnormal loss = Actual toxic waste (600) less normal loss (500) $=100 \mathrm{~kg}$
By-product R net revenues of $£ 1750$ are credited to the joint (main) process account and normal and abnormal losses are valued at the average cost per unit of output:

$$
\frac{\text { Net cost of production }(£ 35750-£ 1750)}{\text { Expected output of the joint products }(8500 \mathrm{~kg})}=£ 4
$$

The cost of the output of the joint products is $£ 33600(8400 \mathrm{~kg} \times £ 4)$ and this is to be allocated to the individual products on the basis of final sales value (i.e. $4800 \mathrm{~kg} \times £ 5=£ 24000$ for P and $3600 \mathrm{~kg} \times £ 7=£ 25200$ for Q$)$:
$P=£ 24000 / £ 49200 \times £ 33600=£ 16390$
$\mathrm{Q}=£ 25200 / £ 49200 \times £ 33600=£ 17210$
The main process account is as follows:
Main process account

| | $(\mathbf{k g})$ | | $(\mathbf{(£)}$ | $\mathbf{(k g)}$ | $\mathbf{(£)}$ |
| :--- | ---: | ---: | :--- | :--- | ---: | ---: |
| Materials | 10000 | 15000 | P Finished goods | 4800 | 16390 |
| Direct labour | - | 10000 | Q Process 2 | 3600 | 17210 |
| Variable overhead | - | 4000 | By-product R | 1000 | 1750 |
| Fixed overhead | - | 6000 | Normal toxic waste | 500 | - |
| Toxic waste disposal a/c | - | $\frac{750}{}$ | Abnormal toxic waste | 100 | 400 |
| | $\underline{10000}$ | $\underline{35750}$ | | $\underline{10000}$ | $\underline{35750}$ |

(b)

Toxic waste disposal (Creditors' account)

Toxic waste disposal (Creditors' account)				(£)
Bank	900	Main process account Abnormal toxic waste		750
				150
	900			900
Abnormal toxic waste account				
Main process account Toxic waste disposal account 150$(100 \times £ 1.50)$		Profit and Loss Account		550
	550			550
Process 2 account				
	kg (£)		kg	(£)
Main process Q	360017210	Finished goods Q^{b}	3300	26465
Fixed cost	6000	Closing work-in-progress ${ }^{\text {b }}$	300	1920
Variable cost	5175^{a}			
	$3600 \quad 28385$		3600	28385

Notes
${ }^{a} 3300+(50 \% \times 300) \times £ 1.50=£ 5175$

		Completed	WIP equiv.	Total equiv.	Cost per units
units	units	unit			
Previous process cost	$\mathbf{(1 7 2 1 0}$	3300	300	3600	$£ 4.78$
Conversion cost	11175	3300	150	3450	$£ 3.24$
					$\underline{£ 8.02}$

Completed units (3 300 units $\times £ 8.02$)
WIP $(300 \times £ 4.78)+(150 \times £ 3.24)$
(c) See the section on methods of apportioning joint costs to joint products in Chapter 6 for the answer to this question.
(d)

Incremental sales revenue per kg from further processing ($£ 7-£ 4.30$)
Incremental (variable) cost per kg of further processing $\underline{1.50}$
Incremental contribution per kg from further processing $\quad \underline{\underline{1.20}}$

At an output of 3600 kg the incremental contribution is	$(£)$
Avoidable fixed costs	4320
Net benefit	$\underline{3600}$

$$
\text { Break-even point }=\frac{\text { Avoidable fixed costs }(£ 3600)}{\text { Incremental unit contribution }(£ 1.20)}=3000 \mathrm{~kg}
$$

Further processing should be undertaken if output is expected to exceed 3000 kg per week.

Solution SM 7.2

(a) See Figure 7.2

Figure 7.2

Workings

(W1)
(W2) $\quad(2100+3300) / 300=£ 18$
(W3) $\quad(1400+2400) / 200=£ 19$
$(W 4) \quad(2800+1500+1155+1350+1520) / 555=£ 15$
(b)

Product	(tonnes)	Total cost $(£)$	Cost per tonne $(£)$
XXX	555	8325	15
Y	225	4050	18
Z	120	2280	19

(c) An alternative treatment is to credit the income direct to the profit and loss account rather than crediting the proceeds to the process from which the byproduct was derived.

Solution SM 7.3

(a) You can see from the question that the input is 240000 kg and the output is 190000 kg . It is assumed that the difference of 50000 kg is a normal loss in output which occurs at the start of processing. Therefore the loss should be charged to the completed production and WIP. By making no entry for normal losses in the cost per unit calculation the normal loss is automatically apportioned between completed units and WIP.

	Opening WIP (£)	Current cost (£)	Total cost (£)	Completed units	$\begin{aligned} & \text { Closing } \\ & \text { WIP } \end{aligned}$	Total equivalent units	Cost per unit (£)	WIP value (£)
Materials	20000	75000	95000	160000	30000	190000	0.50	15000
Processing costs	12000	96000	108000	160000	20000	180000	0.60	12000
			203000				$\overline{1.10}$	27000
			Completed units (160 000 units $\times £ 1.10$)					176000
								203000

(b) This question requires a comparison of incremental revenues and incremental costs. Note that the costs of process 1 are irrelevant to the decision since they will remain the same whichever of the two alternatives are selected. You should also note that further processing 120000 kg of the compound results in 240000 kg of Starcomp.

Incremental sales revenue:

	$(£)$	$(£)$
\quad Starcomp $(120000 \times 2 \mathrm{~kg} \times £ 2)$	480000	
\quad Compound $(120000 \times £ 1.60)$	$\underline{192000}$	288000
Incremental costs:	$\underline{120000}$	
\quad Materials	$\underline{120000}$	$\underline{240000}$
\quad Processing costs		$\underline{48000}$
Incremental profits		

It is therefore worthwhile further processing the compound.
(c) The sales revenue should cover the additional costs of further processing the 40000 kg compound and the lost sales revenue from the 40000 kg compound if it is sold without further processing.

Additional processing costs:
(£)
40000
20000
64000
124000

Minimum selling price per kg of Starcomp $=\frac{£ 124000}{40000 \mathrm{~kg} \times 2}$

$$
=£ 1.55
$$

Solution SM 7.4

(a) Profit and loss account

Opening stock
Production cost
Less closing stock
Cost of sales
Selling and administration costs
Total costs
Sales
Profit/(loss)

\mathbf{W} $(£)$	\mathbf{X} $(£)$	\mathbf{Z} $(£)$	Total $(£)$
-	-	8640	8640
189060	228790	108750	526600
(14385)	(15070)	(15010)	(44465)
174675	213720	102380	490775
24098	27768	10011	61877
198773	241488	112391	552652
240975	277680	100110	618765
42202	36192	(12281)	66113

Workings

Joint process cost per kilo of output $=£ 0.685$ per $\mathrm{kg}(£ 509640 / 744000 \mathrm{~kg})$
Production cost for products W, X and Y :

$$
\begin{aligned}
& \text { Product } W(276000 \mathrm{~kg} \times £ 0.685)=£ 189060 \\
& X(334000 \mathrm{~kg} \times £ 0.685)=£ 228790 \\
& \text { Y }(134000 \mathrm{~kg} \times £ 0.685)=£ 91790
\end{aligned}
$$

Closing stocks for products W and X :

$$
\begin{array}{r}
\text { Product W }(21000 \mathrm{~kg} \times £ 0.685)=£ 14385 \\
X(22000 \mathrm{~kg} \times £ 0.685)=£ 15070
\end{array}
$$

Cost per kilo of product Z :

	$(£)$
Product Y $(128000 \mathrm{~kg} \times £ 0.685)$	87680
Further processing costs	17920
Less by-product sales $(8000 \times £ 0.12)=$$(960)$ Cost per kilo $(£ 104640 / 96000 \mathrm{~kg})$$\quad$104640 $£ 1.09$	

Closing stock of product $\mathrm{Z}(10000 \mathrm{~kg} \times £ 1.09)$	$=£ 10900$
Add closing stock of input $\mathrm{Y}(6000 \times £ 0.685)$	$=\underline{£ 4110}$
Closing stock relating to product Z	$\underline{£ 15010}$

Production cost relating to final product Z :

	$(£)$
Product $Y(134000 \mathrm{~kg} \times £ 0.685)$	
Further processing costs	91790
Less by-product costs	17920
	$\underline{(960)}$
	$\underline{108750}$

(b) The joint costs are common and unavoidable to both alternatives, and are therefore not relevant for the decision under consideration. Further processing from an input of 128000 kg of Y has resulted in an output of 96000 kg of Z . Thus it requires 1.33 kg of Y to produce 1 kg of $\mathrm{Z}(128 / 96)$.

Revenue per kilo for product Z
(£)
Sale proceeds at split-off point $(1.33 \times £ 0.62)$
0.823

Incremental revenue per kg from further processing
Incremental costs of further processing
Incremental profit from further processing
0.242
0.177 [(£17 920 - £960)/96 000]
0.065

It is assumed that selling and administration costs are fixed and will be unaffected by which alternative is selected. The company should therefore process Y further into product Z and not accept the offer from the other company to purchase the entire output of product Y.
(c) See 'Methods of allocating joint costs to joint products' in Chapter 7 for the answer to this question.

Income effects of alternative cost accumulation systems

Solutions to Chapter 8 questions

Solution SM 8.1

(a) Manufacturing cost per unit of output $=$ variable cost $(£ 6.40)+$ fixed cost $(£ 92000 / 20000=£ 4.60)=£ 11$
Absorption costing profit statement

Sales (22 000 units at $£ 14$ per unit) 308.0
Manufacturing cost of sales (22 000 units $\times £ 11$) 242.0
Manufacturing profit before adjustment 66.0
Overhead over-absorbed ${ }^{a} \quad 4.6$
Manufacturing profit 70.6
Note
${ }^{a}$ The normal activity that was used to establish the fixed overhead absorption rate was 20000 units but actual production in period 2 was 21000 units. Therefore a period cost adjustment is required because there is an overabsorption of fixed overheads of $£ 4600$ [(22000 units - 21000 units) $\times £ 4.60$].
(b)

Sales
308.0

Variable cost of sales (22 000 units $\times £ 6.40$) 140.8
Contribution to fixed costs 167.2
Less fixed overheads 92.0
Profit 75.2
(c) (i) Compared with period 1 profits are $£ 34800$ higher in period 2 ($£ 70600-$ $£ 35$ 800). The reasons for the change are as follows:

$$
(£ 000)
$$

Additional sales (7000 units at a profit of $£ 3$ per unit)
Difference in fixed overhead absorption (3000 units extra production at $£ 4.60$ per unit) ${ }^{a}$
Additional profit 34800

Note

${ }^{a}$ Because fixed overheads are absorbed on the basis of normal activity (20 000 units) there would have been an under-recovery of $£ 9200$ (2000 units \times $£ 4.60$) in period 1 when production was 18000 units. In period 2 production exceeds normal activity by 1000 units resulting in an over-recovery of $£ 4600$. The difference between the under- and over-recovery of $£ 13800$ ($£ 9200+$ $£ 4600$) represents a period cost adjustment that is reflected in an increase in profits of $£ 13800$. In other words, the under-recovery of $£ 9200$ was not required in period 2 and in addition there was an over-recovery of $£ 4600$.
(c) (ii) Additional profits reported by the marginal costing system are $£ 4600$ ($£ 75200$ - £70 600). Because sales exceed production by 1000 units in period 2 there is a stock reduction of 1000 units. With an absorption costing system the stock reduction will result in a release of $£ 4600$ (1000 units at $£ 4.60$) fixed overheads as an expense during the current period. With a marginal costing system changes in stock levels do not have an impact on the fixed overhead that is treated as an expense for the period. Thus, absorption costing profits will be $£ 4600$ lower than marginal costing profits.

Solution SM 8.2

(a)

January	(£)	Marginal costing (£)	(£)	Absorption costing (£)
Sales revenue (7000 units)		315000		315000
Less: Cost of sales (7000 units)				
Direct materials	77000		77000	
Direct labour	56000		56000	
Variable production overhead	28000		28000	
Variable selling overhead	35000	196000		
Fixed overhead (7000 $\times £ 3$)			21000	182000
Contribution		119000		
Gross profit				133000
Over-absorption of fixed production overhead (1)				1500
				134500
Fixed production costs (2)	24000			
Fixed selling costs (2)	16000		16000	
Variable selling costs			35000	
Fixed admin costs (2)	24000	64000	24000	75000
Net profit		55000		59500
February	(£)	Marginal costing (£)	(£)	Absorption costing (£)
Sales revenue (8750 units)		393750		393750
Less: Cost of sales (8750 units)				
Direct materials	96250		96250	
Direct labour	70000		70000	
Variable production overhead	35000		35000	
Variable selling overhead	43750	245000		
Fixed overhead (8750 $\times £ 3$)			26250	227500
Contribution		148750		
Gross profit				166250
Under-absorption of fixed production overhead				750
				165500
Fixed production costs (2)	24000			
Fixed selling costs (2)	16000		16000	
Variable selling costs			43750	
Fixed admin costs (2)	24000	64000	24000	83750
Net profit		84750		81750

Workings:

(1) Fixed production overhead has been unitized on the basis of a normal monthly activity of 8000 units (96000 units per annum). Therefore monthly production fixed overhead incurred is $£ 24000(8000 \times £ 3)$. In January actual production exceeds normal activity by 500 units so there is an overabsorption of $£ 1500$ resulting in a period cost adjustment that has a positive impact on profits. In February production is 250 units below normal activity giving an under-absorption of production overheads of $£ 750$.
(2) With marginal costing fixed production overheads are treated as period costs and not assigned to products. Therefore the charge for fixed production overheads is $£ 24000$ per month (see note 1). Both marginal and absorption costing systems treat non-manufacturing overheads as period costs. All of the non-manufacturing overheads have been unitized using a monthly activity level of 8000 units. Therefore the non-manufacturing fixed overheads incurred are as follows:
Selling $\quad=£ 16000(8000 \times £ 2)$
Administration $=£ 24000(8000 \times £ 3)$
(b) In January additional profits of $£ 4500$ are reported by the absorption costing system. Because production exceeds sales by 1500 units in January there is a stock increase of 1500 units. With an absorption costing system the stock increase will result in $£ 4500$ (1500 units $\times £ 3$) being incorporated in closing stocks and deferred as an expense to future periods. With a marginal costing system changes in stock levels do not have an impact on the fixed overhead that is treated as an expense for the period. Thus, absorption costing profits will be $£ 4500$ higher than marginal costing profits. In February sales exceed production by 1000 units resulting in a stock reduction of 1000 units. With an absorption costing system the stock reduction will result in a release of $£ 3000$ (1000 units at $£ 3$) fixed overheads as an expense during the current period. Thus, absorption costing profits are $£ 3000$ lower than marginal costing profits.
(c) (i) Contribution per unit $=$ Selling price ($£ 45$) - unit variable cost $(£ 28)=£ 17$

Break-even point (units) = Annual fixed costs ($£ 64000$)/unit contribution $(£ 17)=3765$ units
Break-even point $(£$ sales $)=3765$ units $\times £ 45$ selling price $=£ 169424$
The above calculations are on a monthly basis. The sales value of the annual break-even point is $£ 2033100(£ 169425 \times 12)$.
(ii) Required contribution for an annual profit of $£ 122800$

$$
\begin{aligned}
& =\text { Fixed costs }(£ 64000 \times 12)+£ 122800 \\
& =£ 899800 \\
& =\frac{\text { Required contribution }(£ 899800)}{\text { Unit contribution }(£ 17)} \\
& =52400 \text { units }
\end{aligned}
$$

$$
\text { Required activity level } \quad=\underline{\text { Required contribution (£899 800) }}
$$

(d) See 'Cost-volume-profit analysis assumptions' in Chapter 9 for the answer to this question.

Solution SM 8.3

(a) Preliminary calculations

	January-June $(£)$	July-December $(£)$
Production overheads	90000	30000
(Over)/under-absorbed	$\underline{(12000)}$	$\underline{12000}$
	$\underline{78000}$	$\underline{42000}$
Change in overheads		(Change in production volume (units)
		12000

Production variable overhead rate per unit		£3	
Fixed production overheads (£78 $000-(18000 \times £ 3)$)		£24 000	
Distribution costs $£$	$£ 45000$		$£ 40000$
Decrease in costs		£5 000	
Decrease in sales volume (units)		5000	
Distribution cost per unit sold		£1	
Fixed distribution cost (£45 $000-(15000 \times £ 1)$)		£30 000	
Unit costs are as follows:			
	(£)		(£)
Selling price			36
Direct materials	6		
Direct labour	9		
Variable production overhead	3		
Variable distribution cost	1		19
Contribution			$\overline{17}$

Note that the unit direct costs are derived by dividing the total cost by units produced

Marginal costing profit statement

	$\begin{aligned} & \text { January-June } \\ & (£ 000) \quad(£ 000) \end{aligned}$		July-December	
Sales		540		360
Variable costs at $£ 19$ per unit sold		285		190
Contribution		255		170
Fixed costs:				
Production overhead	24		24	
Selling costs	50		50	
Distribution cost	30		30	
Administration	80	184	80	184
Profit		71		(14)

(b) Marginal costing stock valuation per unit $=£ 18$ per unit production variable cost Absorption costing stock valuation per unit $=£ 20$ per unit total production cost

January-June	
$(£ 000)$	July-December
$(£ 000)$	

Absorption costing profit
77
(22)

Fixed overheads in stock increase of 3000 units
Fixed overheads in stock decrease of 4000 units
6

Marginal costing profit $\quad \underline{71} \quad \underline{14}$
(c) Absorption gross profit per unit sold $=$ Annual gross profit $(£ 400000) /$ Annual production (15 000 units)

$$
=£ 16
$$

Profit from January-June
Reduction in sales volume ($5000 \times £ 16$)
Difference in overhead recovery ($£ 12000$ over-recovery and $£ 12000$ under-recovery)
Reduction in distribution cost
(d) Fixed cost $£ 184000 \times 2=£ 368000$

Contribution per unit $£ 17$ Break-even point 21647 units (Fixed costs/contribution per unit)
(e) See 'Some arguments in support of variable costing' in Chapter 8 for the answer to this question.

Solution SM 8.4

(a) Fixed overhead rate per unit $=\frac{\text { Budgeted fixed overheads }(£ 300000)}{\text { Budgeted production (40 000 units) }}=£ 7.50$

Absorption Costing (FIFO) Profit Statement:
(£000)
Sales (42000×£72)
Less cost of sales:

Opening stock $(2000 \times £ 30)$	60	
Add production $\left(46000 \times £ 52.50^{a}\right)$	$\frac{2415}{2475}$	
Less closing stock $(6000 \times £ 52.50)$	-315	$\frac{2160}{864}$
Add over-absorption of overheads ${ }^{b}$		27
Profit		891

Profit 891

Notes:
${ }^{a}$ Variable cost per unit $=£ 2070 / 46000=£ 45$
Total cost per unit $=£ 45+£ 7.50$ Fixed overhead $=£ 52.50$
${ }^{b}$ Overhead absorbed $(46000 \times £ 7.50)=£ 345000$
Actual overhead incurred $=£ 318000$
Over-recovery $£ 27000$

Marginal Costing (FIFO) Profit Statement:
(£000)
(£000)
Sales
3024
Less cost of sales:
Opening stock $(2000 \times £ 25)$
50
Add production $(46000 \times £ 45) \quad \frac{2070}{2120}$
Less closing stock $(6000 \times £ 45) \quad 270$
Contribution
Less fixed overheads incurred
Profit
Reconciliation:
Absorption profit exceeds marginal costing profit by $£ 35000$ ($£ 891000$ - $£ 856000$). The difference is due to the fixed overheads carried forward in the stock valuations:

Fixed overheads in closing stocks ($6000 \times £ 7.50$)
Less fixed overheads in opening stocks ($2000 \times £ 5$) 10000
Fixed overheads included in stock movement 35000

Absorption costing gives a higher profit because more of the fixed overheads are carried forward into the next accounting period than were brought forward from the last accounting period.
(b) Absorption Costing (AVECO) Profit Statement:

Sales

(£000) (£000)
Opening stock plus production $\left(48000 \times £ 51.56^{a}\right)$

2475
Less closing stock ($6000 \times £ 51.56$)
309
Add over-absorption of overheads
Profit
2166
858
27
885

Marginal Costing (AVECO) Profit Statement:
(£000) (£000)

Sales

Less cost of sales
Opening stock plus production (48 $000 \times £ 44.17^{b}$) 2120
Less closing stock $(6000 \times £ 44.17) \quad 265$
1855
Contribution
Less fixed overheads $\begin{array}{r}318 \\ -851 \\ \hline\end{array}$

Profit

851

Notes
${ }^{a}$ With the AVECO method the opening stock is merged with the production of the current period to ascertain the average unit cost:
Opening stock $(2000 \times £ 30)+$ Production cost $(£ 2415000)=£ 2475000$
Average cost per unit $=£ 2475000 / 48000$ units
${ }^{b}$ Average cost $=($ Production cost $(£ 2070000)+$ Opening stock $(50000)) / 48000$ units.

Reconciliation:

Difference in profits ($£ 885-£ 851$)
Fixed overheads in closing stocks (309-265)
Less fixed overheads in opening stock ($2000 \times £ 5$) 10
Fixed overheads included in stock movement

The variations in profits between (a) and (b) are $£ 6000$ for absorption costing and $£ 5000$ for marginal costing. With the FIFO method all of the lower cost brought forward from the previous period is charged as an expense against the current period. The closing stock is derived only from current period costs. With the AVECO method the opening stock is merged with the units produced in the current period and is thus allocated between cost of sales and closing stocks. Therefore some of the lower cost brought forward from the previous period is incorporated in the closing stock at the end of the period.

Cost-volume-profit analysis

Solutions to Chapter 9 questions

Solution SM 9.1

(a) See Figure 9.1 (below).
(b) See Chapter 9 for the answer to this question.
(c) The major limitations are:
(i) Costs and revenue may only be linear within a certain output range.
(ii) In practice, it is difficult to separate fixed and variable costs, and the calculations will represent an approximation.
(iii) It is assumed that profits are calculated on a variable costing basis.
(iv) Analysis assumes a single product is sold or a constant sales mix is maintained.
(d) The advantages are:
(i) The information can be absorbed at a glance without the need for detailed figures.
(ii) Essential features are emphasised.
(iii) The graphical presentation can be easily understood by non-accountants.

Figure 9.1 (A) Break-even chart. (B) Contribution graph
(C)

Figure 9.1 (C) Profit-volume graph

Solution SM 9.2

(a) Break-even point $=\frac{\text { fixed costs }(£ 1212000)}{\text { average contribution per } £ \text { of sales }(£ 0.505)}=£ 2400000$

Average contribution per $£$ of sales $=[0.7 \times(£ 1-£ 0.45)]+[0.3 \times(£ 1-£ 0.6)]$
(b) The graph (Figure 9.2) is based on the following calculations:

Zero activity: loss $=£ 1212000$ (fixed costs)
$£ 4 \mathrm{~m}$ existing sales: $(£ 4 \mathrm{~m} \times £ 0.505)-£ 1212000=£ 808000$ profit
$£ 4 \mathrm{~m}$ revised sales: $(£ 4 \mathrm{~m} \times £ 0.475)-£ 1212000=£ 688000$ profit
Existing break-even point: $£ 2400000$
Revised break-even point: £2 551579 ($£ 1212$ 000/£0.475)
Revised contribution per $£$ of sales: $(0.5 \times £ 0.55)+(0.5 \times £ 0.40)=£ 0.475$

Figure 9.2 Profit-volume chart

Solution SM 9.3

(a) (i)

Products	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	Total
1. Unit contribution	$£ 1.31$	$£ 0.63$	$£ 1.87$	
2. Specific fixed costs per unit	$£ 0.49$	$£ 0.35$	$£ 0.62$	
3. General fixed costs per unit	$£ 0.46$	$£ 0.46$	$£ 0.46$	
4. Sales volume $(000$ s units)	98.2	42.1	111.8	252.1
5. Total contribution (1×4)	$£ 128.642$	$£ 26.523$	$£ 209.066$	$£ 364.231$
6. Total specific fixed costs (2×4)	$£ 48.118$	$£ 14.735$	$£ 69.316$	$£ 132.169$
7. Total general fixed costs (3×4)	$£ 45.172$	$£ 19.366$	$£ 51.428$	$£ 115.966$
8. Unit selling price	$£ £ .92$	$£ 1.35$	$£ 2.83$	
9. Total sales revenue (8×4)	$£ 286.744$	$£ 56.835$	$£ 316.394$	$£ 659.973$

Average contribution per unit $=$ Total contribution ($£ 364.231$)/sales volume (252.1)
$=£ 1.4448$
Average selling price per unit $=$ Total sales revenue (£659.973)/sales volume (252.1)
$=£ 2.6179$
Break-even point (units) $\quad=\frac{\text { Total fixed costs }}{\text { Average contribution per unit }}$
$=(£ 132.169+£ 115.966) / £ 1.4448$
$=171.743$ units
Break-even point $($ sales value $)=171.743$ units \times average selling price

$$
(£ 2.6179)
$$

$$
=£ 449.606
$$

Alternatively, the break-even point (sales value) can be calculated using the following formula:

$$
\begin{aligned}
\text { Break-even point } & =\frac{\text { Fixed costs }(£ 132.169+£ 115.966)}{\text { Total contribution }(£ 364.231)} \times \text { Total sales }(£ 659.973) \\
& =£ 449.606
\end{aligned}
$$

It is assumed that the question requires the calculation of the break-even point to cover both general and specific fixed costs. An alternative answer would have been to present details of the break-even point to cover only specific fixed costs.
(ii) The planned sales mix for Product 2 that was used to calculate the breakeven point in (i) is 42.1/252.1. Therefore the number of units of Product 2 at the break-even point is:

$$
42.1 / 252.1 \times 171743 \text { units }=28681
$$

(b) At the forecast sales volume the profit/contributions are as follows:

Contributions to all fixed costs
Less specific fixed costs 14.735

Contribution to general fixed costs $\quad \overline{11.788}$
Less share of general fixed costs $\quad \frac{19.366}{7.57}$
Net loss $\quad \overline{\underline{7.578}}$

Product 2 provides a contribution of $£ 11788$ towards general fixed costs and, unless savings in general fixed costs in excess of $£ 11788$ can be made if Product 2 is abandoned, it is still viable to produce Product 2 . If the company ceases
production of Product 2 it will lose a contribution of $£ 11788$ and total profits will decline by $£ 11788$. The company should investigate whether a greater contribution than $£ 11788$ can be generated from the resources. If this is not possible the company should continue production of Product 2.

Solution SM 9.4

Task 1
Sales
Less variable cost of sales:
Cost of beds
Commission 210600
Transport
Contribution
(£)

1620000

216000
(£)
2106000

Average contribution per bed sold $=£ 59400 / 5400=£ 11$
Fixed costs $(£ 8450+£ 10000+£ 40000+£ 40000)=£ 98450$
Break-even point $($ units $)=\frac{\text { Fixed costs }(£ 98450)}{\text { Contribution per unit }(£ 11)}=8950$ beds
Average selling price per unit ($£ 2106000 / 5400$ beds) $=£ 390$
Break-even point (sales revenue) $=8950$ beds at $£ 390=£ 3490500$
Task 2
The letter should include the items listed in (a) to (e) below:
(a) Required contribution:

Salary
Interest lost
Fixed costs shown in Task 1

Less manager's salary saved
Total contribution 36550
15000
$\begin{array}{r}98450 \\ \hline 150000\end{array}$
$\begin{array}{r}40000 \\ \hline 110000\end{array}$

The minimum profit required to compensate for loss of salary and interest is $£ 11550$ ($£ 110000$ - £98 450 fixed costs).
(b) Required volume $=$ Required contribution ($£ 110000$)/Contribution per unit $(£ 11)=10000$ beds
(c) Average life of a bed $=(9$ years $\times 0.10)+(10$ years $\times 0.60)+(11$ years $\times 0.3)=$ 10.2 years

Total bed population $=44880$ households $\times 2.1$ beds per market $=94248$

$$
\begin{aligned}
\text { Estimated annual demand } & =\frac{94248 \text { beds }}{\text { Average replacement period (10.2 years) }} \\
& =9240 \text { beds }
\end{aligned}
$$

(d) The proposal will not achieve the desired profit. Estimated annual sales are 9240 beds but 10000 beds must be sold to achieve the desired profit. The shortfall of 760 beds will result in profit being $£ 8360(760 \times £ 11)$ less than the desired profit.
(e) The estimate of maximum annual sales volume may prove to be inaccurate because of the following reasons:
(i) The population of Mytown may differ from the sample population. For example the population of Mytown might contain a greater proportion of elderly people or younger people with families. Either of these situations may result in the buying habits of the population of Mytown being different from the sample proportion.
(ii) The data is historic and does not take into account future changes such as an increase in wealth of the population, change in composition or a change in buying habits arising from different types of beds being marketed.

Task 3
This question requires a knowledge of the material covered in Chapter 11. Therefore you should delay attempting this question until you have understood the content of Chapter 11.

	A $(£)$	B $(£)$	C $(\mathbf{£})$	Total
Selling price	240	448	672	
Unit purchase cost	130	310	550	
Carriage inwards	20	$\frac{20}{118}$	$\frac{20}{102}$	
Contribution	90	$\underline{3}$	$\frac{5}{5}$	
Square metres per bed	3	$£ 29.50$	$£ 20.40$	
Contribution per square metre	$£ 30$	2	3	
Ranking	1	45	20	
Maximum demand	35	180	100	385
Storage required (square metres)	105			
Monthly sales schedule and statement of profitability:				

Contribution from sales of A $(35 \times £ 90)$
Contribution from sales of B $(45 \times £ 118)$
Contribution from sales of $C\left(3^{a} \times £ 102\right)$
Less specific avoidable fixed costs:
Staff costs 3780

Departmental fixed overheads 2000
5780
Contribution to general fixed overheads 2520
Less general fixed overheads 466

Note

${ }^{a}$ The balance of storage space available for Model C is 300 square metres less the amount allocated to A and B (285 metres) $=15$ metres. This will result in the sales of 3 beds (15 metres $/ 5$ metres per bed).

Solution SM 9.5

(a) Analysis of semi-variable costs ${ }^{a}$

$$
\begin{aligned}
\text { Method A: variable element } & =\frac{\text { increase in costs }}{\text { increase in activity }}=\frac{£ 10000}{100000 \text { copies }} \\
& =£ 0.10 \text { per copy } \\
\text { fixed element } & =\text { total semi-variable cost }(£ 55000)-\text { variable cost } \\
& (£ 35000) \text { at an activity level of } 350000 \text { copies } \\
\text { Therefore fixed element } & =£ 20000
\end{aligned}
$$

```
Method B: variable element \(=\frac{\text { increase in costs }}{\text { increase in activity }}=\frac{£ 5000}{100000 \text { copies }}\)
    \(=£ 0.05\) per copy
    fixed element \(=\) total semi-variable cost ( \(£ 47500)-\) variable costs
        ( \(£ 17500\) ) at an activity level of 350000 copies
Therefore fixed element \(=£ 30000\)
```

Note
${ }^{a}$ The analysis is based on a comparison of total costs and activity levels at 350000 and 450000 copies per year.
Contribution per copy of new magazine

	Method A $(£)$	Method B $(£)$
Selling price	1.00	1.00
Variable cost (given)	(0.55)	(0.50)
Variable element of semi-variable cost	(0.10)	(0.05)
Lost contribution from existing magazine	$\underline{(0.05)}$	$\underline{(0.05)}$
Contribution	$\underline{0.30}$	$\underline{0.40}$

Calculation of net increase in company profits

	Method A			Method B			
Copies sold	500000	400000	600000	500000	400000	600000	
Contribution per copy	$£ 0.30$	$£ 0.30$	$£ 0.30$	$£ 0.40$	$£ 0.40$	$£ 0.40$	
Total contribution	$£ 150000$	$£ 120000$	$£ 180000$	$£ 200000$	$£ 160000$	$£ 240000$	
Fixed costs a	$£ 100000$	$£ 100000$	$£ 100000$	$£ 150000$	$£ 150000$	$£ 150000$	
	Net increase in profit	$£ 50000$	$£ 20000$	$£ 80000$	$£ 50000$	$£ 10000$	$£ 90000$

Note

${ }^{a}$ Method $\mathrm{A}=$ specific fixed costs $(£ 80000)+$ semi-variable element $(£ 20000)$

$$
=£ 100000
$$

Method B $=$ specific fixed costs $(£ 120000)+$ semi-variable element $(£ 30000)$

$$
=£ 150000
$$

(b)

$$
\begin{aligned}
& \text { Break-even point }=\frac{\text { fixed costs }}{\text { contribution per unit }} \\
& \text { Method } A=£ 100000 / 0.30=333333 \text { copies } \\
& \text { Method } B=£ 150000 / 0.40=375000 \text { copies }
\end{aligned}
$$

The margin of safety is the difference between the anticipated sales and the break-even point sales:

$$
\begin{aligned}
& \text { Method } A=500000-333333=166667 \text { copies } \\
& \text { Method } B=500000-375000=125000 \text { copies }
\end{aligned}
$$

(c) Method B has a higher break-even point and a higher contribution per copy sold. This implies that profits from Method B are more vulnerable to a decline in sales volume. However, higher profits are obtained with Method B when sales are high (see 600000 copies in (B)).

The break-even point from the sale of the existing magazine is 160000 copies ($£ 80000 / £ 0.50$) and the current level of monthly sales is 220000 copies. Therefore sales can drop by 60000 copies before break-even point is reached. For every 10 copies sold of the new publication, sales of the existing publication will be reduced by one copy. Consequently, if more than 600000 copies of the new publication are sold, the existing magazine will make a loss. If sales of the new magazine are expected to consistently exceed 600000 copies then the viability of the existing magazine must be questioned.

Solution SM 9.6

(a) (i) The opportunity costs of producing cassettes are the salary forgone of $£ 1000$ per month and the rental forgone of $£ 400$ per month.
(ii) The consultant's fees and development costs represent sunk costs.
(b) The following information can be obtained from the report.

	£10 selling price	$£ 9$ selling price
Sales quantity	7500-10 000 units	$12000-18000$ units
Fixed costs ${ }^{a}$	£13525	$£ 17525$
Profit at maximum sales ${ }^{b}$	£3 975	£4975
Profit/(loss) at minimum sales ${ }^{\text {c }}$	(£400)	(£2 525)
Break-even point ${ }^{d}$	7729 units	14020 units
Margin of safety:		
Below maximum	2271 units	3980 units
Above minimum	229 units	2020 units

Notes
${ }^{a}$ Fixed production cost $+£ 1400$ opportunity cost
${ }^{b}$ (10000 units $\times £ 1.75$ contribution) $-£ 13525$ fixed costs $=£ 3975$ profit
(18 000 units $\times £ 1.25$ contribution) $-£ 17525$ fixed costs $=£ 4975$ profit
${ }^{c}(7500$ units $\times £ 1.75$ contribution) $-£ 13525$ fixed costs $=£ 400$ loss
(12000 units $\times £ 1.25$ contribution) - $£ 17525$ fixed costs $=£ 2525$ loss
${ }^{d}$ Fixed costs/contribution per unit
Conclusions
(i) The $£ 10$ selling price is less risky than the $£ 9$ selling price. With the $£ 10$ selling price, the maximum loss is lower and the break-even point is only 3% above minimum sales (compared with 17% for a $£ 9$ selling price).
(ii) The $£ 9$ selling price will yield the higher profits if maximum sales quantity is achieved.
(iii) In order to earn $£ 3975$ profits at a $£ 9$ selling price, we must sell 17200 units (required contribution of 17525 fixed costs plus $£ 3975$ divided by a contribution per unit of $£ 1.25$).

Additional information required
(i) Details of capital employed for each selling price.
(ii) Details of additional finance required to finance the working capital and the relevant interest cost so as to determine the cost of financing the working capital.
(iii) Estimated probability of units sold at different selling prices.
(iv) How long will the project remain viable?
(v) Details of range of possible costs. Are the cost figures given in the question certain?

Cost estimation and cost behaviour

Solutions to Chapter 10 questions

Solution SM 10.1

(a) The first stage is to convert all costs to a 2002 basis. The calculations are as follows:

	$\mathbf{1 9 9 8}$ $(£ 000)$	$\mathbf{1 9 9 9}$ $(£ 000)$	$\mathbf{2 0 0 0}$ $(£ 000)$	$\mathbf{2 0 0 1}$ $(£ 000)$
Raw materials Skilled labour	$242(1.2)^{4}$	$344(1.2)^{3}$	$461(1.2)^{2}$	$477(1.2)$
Unskilled labour				
Factory overheads	$168(1.15)^{3}(1.2)$	$206(1.15)^{2}(1.2)$	$246(1.15)(1.2)$	$265(1.2)$
Power Raw materials	$25(1.1)(1.25)^{3}$	$33(1.25)^{3}$	$47(1.25)^{2}$	$44(1.25)$
Skilled labour	500.94	595.12	663.84	572.4
Unskilled labour				
Factory overheads	306.432	326.304	339.48	318
Power	53.625	64.35	73.32	55
Total (2002 prices)	861000	986000	1077000	945000
Output (units)	160000	190000	220000	180000

The equation $Y=a+b x$ is calculated from the above schedule of total production costs (2002 prices) and output. The calculations are as follows:

Output in units (000)	Total cost (£000)		
x	y	x^{2}	$x y$
160	861	25600	137760
190	986	36100	187340
220	1077	48400	236940
180	945	32400	170100
$\Sigma x=\overline{750}$	$\Sigma y=\underline{3869}$	$\Sigma x^{2}=\underline{\underline{142500}}$	$\Sigma x y=\underline{732140}$

We now solve the following simultaneous equations:

$$
\begin{aligned}
\Sigma y & =N a+b \Sigma x \\
\Sigma x y & =\Sigma x a+b \Sigma x^{2}
\end{aligned}
$$

Therefore

$$
\begin{align*}
3869 & =4 a+750 b \tag{1}\\
732140 & =750 a+142500 b \tag{2}
\end{align*}
$$

Multiply equation (1) by 190 (142 500/750) and equation (2) by 1 . Then equation (1) becomes

$$
\begin{equation*}
735110=760 a+142500 b \tag{3}
\end{equation*}
$$

Subtract equation (2) from equation (3):

$$
\begin{aligned}
2970 & =10 a \\
a & =297
\end{aligned}
$$

Substitute for a in equation (1):

$$
\begin{aligned}
3869 & =4 \times 297+750 b \\
2681 & =750 b \\
b & =3.57
\end{aligned}
$$

The relationship between total production costs and volume for 2002 is:

$$
y=£ 297000+3.57 x
$$

where $y=$ total production costs (at 2002 price) and $x=$ output level.
(b) See Chapter 10 for the answer to this question.
(c) General company overheads will still continue whether or not product LT is produced. Therefore the output of LT will not affect general production overheads. Consequently, the regression equation should not be calculated from cost data that includes general company overheads. General company overheads will not increase with increments in output of product LT. Hence short-term decisions and cost control should focus on those costs that are relevant to production of LTs. Common and unavoidable general fixed costs are not relevant to the production of LT, and should not be included in the regression equation.

Solution SM 10.2

Total cost for 1525 machine hours $=£ 14000+0.0025\left(1525^{2}\right)=£ 19814$
Inflation adjusted figure $=£ 19814 \times 1.06=£ 21003$
Variance $=£ 4580 \mathrm{~F}(£ 21003-£ 16423)$
Answer = D

Solution SM 10.3

Machine hours $=[100000+(30 \times 240)] \times 1.08=115776$
Overhead cost $=$ Overhead cost $=£ 10000+(0.25 \times 115776)=£ 38944$
Answer $=\mathrm{C}$

Measuring relevant costs and revenues for decision-making

Solutions to Chapter 11 questions

Solution SM 11.1

(a)

Purchase price of component from supplier 50
Additional cost of manufacturing (variable cost only) $\underline{34}$
Saving if component manufactured $\quad \overline{16}$
The component should be manufactured provided the following assumptions are correct:
(i) Direct labour represents the additional labour cost of producing the component.
(ii) The company will not incur any additional fixed overheads if the component is manufactured.
(iii) There are no scarce resources. Therefore the manufacture of the component will not restrict the production of other more profitable products.
(b) (i) Additional fixed costs of $£ 56000$ will be incurred, but there will be a saving in purchasing costs of $£ 16$ per unit produced. The break-even point is 3500 units (fixed costs of $£ 56000 / £ 16$ per unit saving). If the quantity of components manufactured per year is less than 3500 units then it will be cheaper to purchase from the outside supplier.
(ii) The contribution per unit sold from the existing product is $£ 40$ and each unit produced uses 8 scarce labour hours. The contribution per labour hour is $£ 5$. Therefore if the component is manufactured, 4 scarce labour hours will be used, resulting in a lost contribution of $£ 20$. Hence the relevant cost of manufacturing the components is $£ 54$, consisting of $£ 34$ incremental cost plus a lost contribution of $£ 20$. The component should be purchased from the supplier.
(c) The book value of the equipment is a sunk cost and is not relevant to the decision whether the company should purchase or continue to manufacture the components. If we cease production now, the written-down value will be written off in a lump sum, whereas if we continue production, the writtendown value will be written off over a period of years. Future cash outflows on the equipment will not be affected by the decision to purchase or continue to manufacture the components. For an illustration of the irrelevance of the written down value of assets for decision-making purposes see 'Replacement of equipment' in Chapter 11.

Solution SM 11.2

(a) Calculation of minimum selling price:

	(£)
Direct materials: Steel ${ }^{a}$	55.00
Brass Fittings ${ }^{\text {b }}$	20.00
Direct Labour: Skilled ${ }^{c}$	300.00
Semi-skilled ${ }^{d}$	-
Overhead ${ }^{\text {e }}$	7.50
Estimating time ${ }^{f}$	-
Administration ${ }^{8}$	-
Relevant cost of the order	$\underline{382.50}$

Notes:
${ }^{a}$ Using the materials for the order will result in them having to be replaced. Therefore future cash outflows will increase by $£ 55$.
${ }^{b}$ Future cash outflows of $£ 20$ will be incurred.
${ }^{c}$ The required labour hours can be obtained by reducing production of another product involving a lost contribution before deducting the labour cost of $£ 21$ $(£ 13+£ 8)$ per hour (note that the labour cost will be incurred for all alternatives and therefore is not an incremental cash flow). Alternatively, the company can pay additional wages involving overtime of $£ 300$ (25 hours \times $£ 12)$. Therefore the latter course of action is the most economical and the incremental cash flows from undertaking the order will be $£ 300$.
${ }^{d}$ No incremental cost is involved since the alternative is paid idle time.
${ }^{e}$ The only incremental cost is power consisting of 10 hours at $£ 0.75$ per hour.
f Estimating time is a sunk cost.
g Administration does not involve any incremental cash flows.
(b) Factors to be considered include:
(i) time period for repeat orders, the number of repeat orders and the likely demand;
(ii) the cash flows generated from the alternative use of the capacity;
(iii) competition to obtain future orders from Exe plc;
(iv) estimated price quotations from competitors.
(c) Limiting factor presentation:

	Product X	Product Y
Product contribution	$£ 10$	$£ 20$
Kg of material used per product	1	4
Contribution per kg	$£ 10$	$£ 5$

Thus scarce materials should be allocated to Product X since it yields a contribution of $£ 5$ per kg in excess of the contribution derived from Product Y .

Opportunity cost approach:

	Product X		Product Y	
Product contribution at acquisition cost	£10		£20	
Lost contribution from alternative use:				
1 kg allocated to Y at $£ 5$ per kg	(£5)			
4 kg allocated to X at $£ 10$ per kg			$£ 40$	
Cash flow impact per product	+£5		-£20	
Cash flow impact per kg	+£5	(£5/1 kg)	-£5	(£20/4 kg)

The above analysis shows that X yields a contribution of $£ 5$ per kg when taking alternative uses of the materials into consideration. Producing Product Y results in the contribution being reduced by $£ 5$ per kg taking into account the alternative use of the materials. This is consistent with the limiting factor
approach which indicates that the company is $£ 5$ per kg better off using the materials for X or $£ 5$ per kg worse off from using the materials for Y .

Solution SM 11.3

(a) (i)

	Product I (£000)	$\begin{aligned} & \text { Product II } \\ & (£ 000) \end{aligned}$	$\begin{aligned} & \text { Product III } \\ & (£ 000) \end{aligned}$	Total (£000)
Sales	2475	3948	1520	7943
Contribution	1170	1692	532	3394
Attributable fixed costs	(275)	(337)	(296)	(908)
General fixed costs ${ }^{a}$	(520)	(829)	(319)	(1668)
	(795)	(1166)	(615)	(2576)
Profit	375	526	(83)	818
	$=£ 1.6 /$ unit	$=£ 1.40 /$ unit	$=(£ 0.04 /$ unit $)$	

Note
${ }^{a}$ General fixed costs are allocated to products at 21% of total sales revenue (£1668/£7943)
(ii) If Product III is discontinued it is assumed that variable costs and attributable (i.e. specific) fixed costs are avoidable. It is assumed that general fixed costs are common and unavoidable to all products and will remain unchanged if Product III is discontinued. However, it is possible that some general fixed costs may be avoidable in the longer term. The revised profits if Product III is discontinued will be:

Contribution of Products I and II (£1170 + £1692)
Attributable fixed costs $(£ 275+£ 337)$
General fixed costs (1668)
Profit 582

Profits will decline by $£ 236000$ ($£ 818$ - $£ 582$) if Product III is discontinued because A Ltd will no longer obtain a contribution of $£ 236000$ ($£ 532-$ $£ 296$) towards general fixed costs.
(iii) Extra sales of 15385 units ($£ 80000$ additional fixed costs/ $£ 5.20$ unit contribution) will be required to cover the additional advertising expenditure. It is assumed that existing fixed costs will remain unchanged.
(iv) The revised unit contribution will be $£ 3.45$ ($£ 9.45-£ 6$).

$$
\begin{aligned}
\text { Required sales }= & \frac{£ 1692000 \text { (existing total contribution) }}{£ 3.45 \text { revised unit contribution }} \\
= & 490435 \text { units (an increase of } 30.4 \% \text { over the budgeted } \\
& \text { sales of } 376000 \text { units) }
\end{aligned}
$$

(b) The following factors will influence cost behaviour in response to changes in activity:
(i) The magnitude of the change in activity (more costs are likely to be affected when there is a large change in activity).
(ii) Type of expense (some expenses are directly variable with volume such as direct materials, whereas others are fixed or semi-fixed).
(iii) Management policy (some expenses are varied at the discretion of management, e.g. advertising).
(iv) The time period (in the long term, all costs can be changed in response to changes in activity whereas in the short term, some costs, e.g. salaries of supervisors, will remain unchanged).

Solution SM 11.4

Task 1
(a) and (b)

Task 2
(a) A selling price of $£ 80$ maximises company profits at $£ 366800$ per annum.
(b) Factors to be considered include:
(i) The effect on morale arising from a large reduction in direct labour and the resulting redundancies.
(ii) If competitors do not increase their prices customers may migrate to competitors in the long term and long-term annual profits may be considerably less than the profits predicted in the above schedule. The migration of customers may also enable competitors to reap the benefits of economies of scale thus resulting in their having lower unit costs than Rane Ltd.
Task 3
(a) The products should first be ranked according to their contribution per component used.

	Product A $£$ per unit	Product B $£$ per unit	Product C $£$ per unit	Product D $£$ per unit
Selling price	14	12	16	17
Variable costs	$\underline{11}$	$\underline{11}$	$\frac{12}{4}$	$\frac{12}{5}$
Contribution	3	1		
Number of components used per unit	$2(£ 4 / £ 2)$	$1(£ 2 / £ 2)$	$3(£ 6 / £ 2)$	$4(£ 8 / £ 2)$
Contribution per component Ranking$£ 1.50$	$£ 1.00$	$£ 1.33$	$£ 1.25$	
R	1	4	2	3

The scarce components should be allocated as follows:

Product	Units	Components used	Balance unused
A	4000	8000	14400
C	3600	10800	3600
D	900	$\underline{3600}$	-

(b) Profit to be earned next period:

	Product	Units	Contribution per unit $(\mathbf{£})$	Total $(£)$
	A	4000	3	12000
	C	3600	4	14400
	D	900		$\underline{4500}$
			$\underline{30900}$	
Total contribution				$\underline{8000}$
Fixed costs				
Profit			$\underline{22900}$	

The application of linear programming to management accounting

Solutions to Chapter 12 questions

Solution SM 12.1

(a)

	M	F
Contribution per unit	$£ 96$	$£ 110$
Litres of material P required	8	10
Contribution per litre of material P	$£ 12$	$£ 11$
Ranking	1	2
Production/sales (units)	1000	$2325^{\text {a }}$

Note
a 31250 litres of P less (1000×8) for $\mathrm{M}=23250$ litres for F giving a total production of 2325 units (23250 litres/10)
(b)

	M $\mathbf{(£ 0 0 0)}$	F $\mathbf{(£ 0 0 0)}$	Total $\mathbf{(£ 0 0 0)}$
Sales	200	488.250	688.250
Variable costs:	20	58.125	78.125
\quad Material P	40	46.500	86.500
Material Q	28	81.375	109.375
Direct labour	$\underline{16}$	$\underline{46.500}$	$\underline{62.500}$
Overhead	$\underline{104}$	$\underline{232.500}$	$\underline{336.500}$
Contribution	96		$\underline{351.750}$
Fixed costs $(£ 150000+£ 57750)$	$\underline{144.000}$		
Profit			

(c) Maximise $\mathrm{Z}=96 \mathrm{M}+110 \mathrm{~F}$ (product contributions) subject to:
$8 \mathrm{M}+10 \mathrm{~F} \leq 31250$ (material P constraint)
$10 \mathrm{M}+5 \mathrm{~F} \leq 20000$ (material Q constraint)
$4 \mathrm{M}+5 \mathrm{~F} \leq 17500$ (direct labour constraint)
$\mathrm{M} \quad \leq 1000$ (maximum demand for M)
$\mathrm{F} \quad \leq 3000$ (maximum demand for F)
The above constraints are plotted on the graph shown in Figure 12.1 (below) as follows:

Material P; Line from $\mathrm{M}=3906.25, \mathrm{~F}=0$ to $\mathrm{F}=3125, \mathrm{M}=0$
Material Q; Line from $M=2000, F=0$ to $F=4000, M=0$
Direct labour; Line from $\mathrm{M}=4375, \mathrm{~F}=0$ to $\mathrm{F}=3500, \mathrm{M}=0$
Sales demand of M ; Line from $\mathrm{M}=1000$
Sales demand of F; Line from F $=3000$
The optimal solution occurs where the lines in Figure 12.1 intersect for material P and Q constraints. The point can be determined from the graph or mathematically as follows:
$8 \mathrm{M}+10 \mathrm{~F}=31250$ (material P constraint)
$10 \mathrm{M}+5 \mathrm{~F}=20000$ (material Q constraint)

Figure 12.1
multiplying the first equation by 1 and the second equation by 2 :
$8 \mathrm{M}+10 \mathrm{~F}=31250$
$20 \mathrm{M}+10 \mathrm{~F}=40000$
subtracting $-12 \mathrm{M}=-8750$
$\mathrm{M}=729.166$
Substituting for M in the first equation:
$8(729.166)+10 \mathrm{~F}=31250$
$\mathrm{F}=2541.667$
(d)

		$(£)$
Contribution:	$(729$ units of M at $£ 96)$ $(2542$ units of F at $£ 110)$	69984 Less fixed costs Profit
	$\underline{349604}$	
$\underline{207750}$		
141854		

Moving from the solution in (c) where the lines intersect as a result of obtaining an additional litre of material Q gives the following revised equations:
$8 \mathrm{M}+10 \mathrm{~F}=31250$ (material P constraint)
$10 \mathrm{M}+5 \mathrm{~F}=20001$ (material Q constraint)
The values of M and F when the above equations are solved are 729.333 and 2541.533. Therefore, M is increased by 0.167 units and F is reduced by 0.134 units giving an additional total contribution of $£ 1.292$ [0.167 $\times £ 96)-(0.134 \times £ 110)]$ per additional litre of Q. Therefore the shadow price of Q is $£ 1.292$ per litre.
(e) See Chapter 12 for an explanation of shadow prices.
(f) Other factors to be taken into account include the impact of failing to meet the demand for product M, the need to examine methods of removing the constraints by sourcing different markets for the materials and the possibility of subcontracting to meet the unfulfilled demand.

Solution SM 12.2

(a)
(1) Estimated demand (000 units)
(2) Machine hours required (per 000 units)

Product X	Product Y	Total
315	135	
160	280	
50400	37800	88200

The machine hours required to meet demand are in excess of the machine hours that are available. Therefore machine hours are the limiting factor and the company should allocate capacity according to contribution per machine hour.

	Product X (£)	Product \mathbf{Y} (£)
Selling price	11.20	15.70
Variable cost	6.30	8.70
Contribution	4.90	7.00
Machine hours required per unit ${ }^{a}$	0.16	0.28
Contribution per machine hour	$£ 30.625$	£25

Note
${ }^{a}$ Product $\mathrm{X}=160 / 1000$ Product $\mathrm{Y}=280 / 1000$
The company should concentrate on maximizing output of Product X. Meeting the maximum demand of Product X will require 50400 machine hours and this will leave 34600 hours ($85000 \mathrm{hrs}-50400 \mathrm{hrs}$) to be allocated to Product Y. Therefore 123571 units ($34600 \mathrm{hrs} / 0.28 \mathrm{hrs}$) of Y and 315000 units of X should be produced.
(b)

Product \mathbf{X}	Product Y $(£)$ $\mathbf{(£)}$
4.90	7.00
315000	123.571
1543.5	864.997

Sales volume
Contribution $(£ 000$ s)
Less fixed costs ${ }^{a}$
Profit
Note
${ }^{a}$ Fixed costs: Product $X=315000$ units $\times £ 4$ per unit $\quad=£ 1260000$
Product $Y=123571$ units $\times £ 7$ per unit $\quad=\frac{£ 864997}{2124997}$

Total
(£)
2408.497 $\begin{array}{r}2124.997 \\ 283.500 \\ \hline\end{array}$
(c) There are now two limiting factors and linear programming techniques must be used.

Let $\quad X=$ Number of units of X produced (in 000s of units)
$\mathrm{Y}=$ Number of units of Y produced (in 000s of units)
$160 X+280 Y=85000$ Machine hours
$120 X+140 Y=55000$ Labour hours
Multiply equation (2) by 2 and equation (1) by 1

$$
\begin{align*}
& 160 X+280 Y=85000 \tag{1}\\
& 240 X+280 Y=110000 \tag{2}
\end{align*}
$$

Subtract equation (2) from equation (1)

$$
\begin{aligned}
-80 X & =-25000 \\
X & =312.5 \text { (i.e. } 312500 \text { units) }
\end{aligned}
$$

Substitute for X in equation (1)

$$
\begin{aligned}
160(312.5)+280 \mathrm{Y} & =85000 \\
50000+280 \mathrm{Y} & =85000 \\
280 \mathrm{Y} & =35000 \\
\mathrm{Y} & =125 \text { (i.e. } 125000)
\end{aligned}
$$

Therefore the optimal output to fully utilise both labour and machine capacity is 312500 units of Product X and 125000 units of Product Y.

Activity-based-costing

Solutions to Chapter 13 questions

Solution SM 13.1

(a) (i) Conventional Absorption Costing Profit Statement:

	XYI	YZT	ABW	
(1)	Sales volume (000 units)	50	40	30
		$£$	$£$	$£$
(2)	Selling price per unit	45	95	73
(3)	Prime cost per unit	32	84	65
(4)	Contribution per unit	13	11	8
(5)	Total contribution in $£ 000$ s (1×4)	650	440	240
(6)	Machine department overheads			
(7)	Assembly department overheads ${ }^{b}$	120	240	144
	$\underline{288.75}$	$\underline{99}$	$\underline{49.5}$	
	Profit $(£ 000$ s)	$\underline{241.25}$	$\underline{101}$	$\underline{46.5}$

Total profit $=£ 388750$
Notes:
${ }^{a} \mathrm{XYI}=50000 \times 2 \mathrm{hrs} \times £ 1.20, \mathrm{YZT}=40000 \times 5 \mathrm{hrs} \times £ 1.20$
${ }^{b} \mathrm{XYI}=50000 \times 7 \mathrm{hrs} \times £ 0.825, \mathrm{YZT}=40000 \times 3 \mathrm{hrs} \times £ 0.825$
(ii) Cost pools:

	Machining services	Assembly services	Set-ups	Order processing	Purchasing
£000	357	318	26	156	84
Cost drivers	420000 machine hours	$\begin{gathered} 530000 \\ \text { direct } \\ \text { labour hours } \end{gathered}$	$\begin{gathered} 520 \\ \text { set-ups } \end{gathered}$	$\begin{gathered} 32000 \\ \text { customer } \\ \text { orders } \end{gathered}$	$\begin{aligned} & 11200 \\ & \text { suppliers' } \\ & \text { orders } \end{aligned}$
Cost driver rates	$£ 0.85$ per machine hour	$£ 0.60$ direct labour hour	$£ 50$ per set-up	$£ 4.875$ per customer order	£7.50 per suppliers' order

ABC Profit Statement:

	XYI $(£ 000)$	YZT $(£ \mathbf{0 0 0})$	ABW $(£ 000)$
Total contribution	650	440	240
Less overheads:			
Machine department at $£ 0.85$ per hour	85	170	102
Assembly at $£ 0.60$ per hour	210	72	36
Set-up costs at $£ 50$ per set-up	6	10	10
Order processing at $£ 4.875$ per order	39	39	78
Purchasing at $£ 7.50$ per order	$\underline{22.5}$	$\underline{30}$	$\underline{31.5}$
Profit (Loss)	$\underline{287.5}$	$\underline{119}$	$\underline{(17.5)}$

Total profit $=£ 389000$
(b) See the sections on 'Comparison of traditional and ABC costing systems' and 'Volume-based and non-volume-based cost drivers' in Chapter 13 for the answer to this question.

Solution SM 13.2

(a) For short-term decision-making, contribution to fixed costs is often advocated. Contribution is defined as sales less variable costs. It therefore attempts to include only those costs and revenues that will change as a result of a decision. Fixed costs are assumed to be unavoidable and remain unchanged and irrelevant for decision-making. Ignoring fixed costs can only be justified in certain circumstances. For example, the contribution approach can be applied to onetime only special orders where the company has a temporary excess supply of spare capacity. In this situation a short-term approach can be adopted by focusing only on the sales revenues and variable costs. The contribution approach is also advocated for pricing off-peak business and ranking products where limiting factors apply (see 'Product-mix decisions when capacity constraints apply' in Chapter 9). In the latter situation a company may be faced with short-term capacity constraint and profit is maximized by ranking products by their contributions per limiting factor.

The contribution approach can only be applied when decisions have no long-term implications. However, most decisions do have long-term implications and in these circumstances fixed costs cannot be ignored. With the contribution approach there is a danger that only those direct costs that are uniquely attributable to individual products will be regarded as relevant for decision-making. Those fixed costs relating to the joint resources that fluctuate according to the demand for them will also be relevant for decision-making. An ideal answer should emphasise, why in the longer-term, fixed costs are likely to change and be relevant for decision-making. For a more detailed discussion of this issue you should refer to 'The need for a cost accumulation system in generating relevant cost information for decision-making' in Chapter 13. Points 1 (many indirect costs are relevant for decision-making) and 3 (product decisions are not independent) are of particular importance.
(b) See section 'Designing ABC systems' in Chapter 13 for the answer to this question.
(c) See sections on 'A comparison of traditional and ABC systems' and 'Volumebased and non-volume-based cost drivers' in Chapter 13 for the answer to this question.
(d) See 'Activity hierarchies' in Chapter 13 for the answer to this question.

Solution SM 13.3

(a) (i) Direct labour overhead rate

total overheads ($£ 1848000$)			
$=£ 21$ per direct labour hour			
Product costs			
Product	X	Y	Z
	(£)	(£)	(£)
Direct labour	8	12	6
Direct materials	25	20	11
Overhead ${ }^{a}$	$\underline{28}$	42	$\underline{21}$
Total cost	$\underline{61}$	$\underline{74}$	$\underline{38}$
Note			
${ }^{a} \mathrm{X}=11 / 3$ hours $\times £ 21$			
$\mathrm{Y}=2$ hours $\times £ 21$			
$\mathrm{Z}=1$ hour $\times £ 21$			

(ii) Materials handling

Overhead rate

$$
\begin{aligned}
& =\frac{\text { receiving department overheads }(£ 435000)}{\text { direct material cost }(£ 1238000)} \times 100 \\
& =35.14 \% \text { of direct material cost }
\end{aligned}
$$

Machine hour overhead rate

$$
\begin{aligned}
& =\frac{\text { other overheads }(£ 1413000)}{76000 \text { machine hours }} \\
& =£ 18.59 \text { per machine hour }
\end{aligned}
$$

Product costs			
Product	X	Y	Z
	(£)	(£)	(£)
Direct labour	8.00	12.00	6.00
Direct materials	25.00	20.00	11.00
Materials handling	$\begin{gathered} 8.78 \\ (£ 25 \times 35.14 \%) \end{gathered}$	7.03	$\begin{array}{r} 3.87 \\ \times \quad 351 \end{array}$
Other overheads ${ }^{a}$ (machine hour basis)	24.79	18.59	37.18
Total cost	66.57	$\underline{57.62}$	$\underline{58.05}$

Note
${ }^{a} \mathrm{X}=11 / 3 \times £ 18.59$
$\mathrm{Y}=1 \times £ 18.59$
$Z=2 \times £ 18.59$
(b) The cost per transaction or activity for each of the cost centres is as follows:

Set-up cost
Cost per set up

$$
=\frac{\text { setup cost }(£ 30000)}{\text { number of production runs }(30)}=£ 1000
$$

Receiving

Cost per receiving order

$$
=\frac{\text { receiving cost }(£ 435000)}{\text { number of orders }(270)}=£ 1611
$$

Packing

Cost per packing order

$$
=\frac{\text { packing cost }(£ 250000)}{\text { number of orders }(32)}=£ 7812
$$

Engineering
Cost per production order

$$
=\frac{\text { engineering cost }(£ 373000)}{\text { number of production orders }(50)}=£ 7460
$$

The total set-up cost for the period was $£ 30000$ and the cost per transaction or activity for the period is $£ 1000$ per set-up. Product X required three production runs, and thus $£ 3000$ of the set-up cost is traced to the production of product X for the period. Thus the cost per set-up per unit produced for product X is $£ 0.10$ ($£ 3000 / 30000$ units).

Similarly, product Z required 20 set-ups, and so $£ 20000$ is traced to product Z. Hence the cost per set-up for product Z is $£ 2.50$ ($£ 20000 / 8000$ units).

The share of a support department's cost that is traced to each unit of output for each product is therefore calculated as follows:
cost per transaction
The unit standard costs for products X, Y and Z using an activity-based costing system are

	X	Y	Z
Direct labour	$£ 8.00$	$£ 12.00$	£6.00
Direct materials	25.00	20.00	11.00
Machine overhead ${ }^{a}$	13.33	10.00	20.00
Set-up costs	0.10	0.35	2.50
Receiving ${ }^{\text {b }}$	0.81	2.82	44.30
Packing ${ }^{\text {c }}$	2.34	1.17	19.53
Engineering ${ }^{d}$	3.73	3.73	23.31
Total manufacturing cost	53.31	50.07	126.64

Notes
${ }^{a}$ Machine hours \times machine overhead rate ($£ 760$ 000/
$76000 \mathrm{hrs})$
${ }^{b} \mathrm{X}=(£ 1611 \times 15) / 30000$
$\mathrm{Y}=(£ 1611 \times 35) / 20000$
$\mathrm{Z}=(£ 1611 \times 220) / 8000$
${ }^{c} \mathrm{X}=(£ 7812 \times 9) / 30000$
$\mathrm{Y}=(£ 7812 \times 3) / 20000$
$\mathrm{Z}=(£ 7812 \times 20) / 8000$
${ }^{d} \mathrm{X}=(£ 7460 \times 15) / 30000$
$\mathrm{Y}=(£ 7460 \times 10) / 20000$
$\mathrm{Z}=(£ 7460 \times 25) / 8000$
(c) The traditional product costing system assumes that products consume resources in relation to volume measures such as direct labour, direct materials or machine hours. The activity-based system recognises that some overheads are unrelated to production volume, and uses cost drivers that are independent of production volume. For example, the activity-based system assigns the following percentage of costs to product Z, the low volume product:

Set-up-related costs	66.67%
(20 out of 30 set-ups) $)$	
Delivery-related costs $\quad 62.5 \%$	
(20 out of 32 deliveries) $)$	
Receiving costs 81.5%	
(220 out of 270 receiving orders)	
Engineering-related costs 50%	
(25 out of 50 production orders)	

In contrast, the current costing system assigns the cost of the above activities according to production volume, measured in machine hours. The total machine hours are

Product X $40000(30000 \times 11 / 3)$
Product Y $20000(20000 \times 1)$
Product Z $\underline{16000(8000 \times 2)}$
76000

Therefore 21% (16000/76 000) of the non-volume-related costs are assigned to product Z if machine hours are used as the allocation base. Hence the traditional system undercosts the low-volume product, and, on applying the above approach, it can be shown that the high-volume product (product X) is overcosted. For example, 53% of the costs ($40000 / 76000$) are traced to product X with the current system, whereas the activity-based system assigns a much lower proportion of non-volume-related costs to this product.

Decision-making under conditions of risk and uncertainty

Solutions to Chapter 14 questions

Solution SM 14.1

(a) Profit and Loss Statement for Period Ending 31 May 2000
(£)
Revenue (14 400000 journeys):
$0-3$ miles ($7200000 \times £ 0.20$)
1440000
$4-5$ miles ($4320000 \times £ 0.30$)
1296000
Over 5 miles ($2880000 \times £ 0.50$)
1440000
Juvenile fares (4800 $000 \times £ 0.15$)
720000
Senior citizen fares (4800 $000 \times £ 0.10$)
$\begin{array}{r}480000 \\ \hline 5376000\end{array}$
Advertising revenue

250000
5626000

Less: Variable costs (20 routes $\times 4$ buses $\times 150$ miles \times
330 days $\times £ 0.75$)
(2970000)

Fixed costs
(1750000)

Net profit
906000
(b) Assuming the same passenger mix as 2000 the weighted average fare per passenger for year ending 31 May 2001 is $(£ 5376000 \times 1.05) / 24000000=£ 0.2352$.
The break-even point is where:
Total revenue from fares + Advertising revenue $=$ Total cost
Let $x=$ number of passenger journeys
Break-even point: $0.2352 x+£ 250000=(2970000+£ 1750000) 1.1$
$0.2352 x=£ 4942000$
$x=21011905$
Maximum capacity utilisation $=40000000$ passenger journeys (24 000 000/0.6)
Break-even capacity utilisation $=21011$ 905/40 $000000=52.5 \%$
(c) (i)

Expected value and probability estimates for 2001

Capacity Utilisation		Revenue		Inflation		Costs	Combined Net probability profit		Expected value
		Fares	Adverts						
\%	(Probability)	(£000)	(£000)	(\%)	(Probability)	(£000)		(£000)	(£000)
70	0.1	6585.6^{a}	250	8	0.3	$5097.6^{\text {b }}$	0.03	1738.0	52.14
		6585.6	250	10	0.6	$5192.0^{\text {b }}$	0.06	1643.6	98.62
		6585.6	250	12	0.1	$5286.4{ }^{\text {b }}$	0.01	1549.2	15.49
60	0.5	$5644.8{ }^{\text {a }}$	250	8	0.3	5097.6	0.15	797.2	119.58
		5644.8	250	10	0.6	5192.0	0.30	702.8	210.84
		5644.8	250	12	0.1	5286.4	0.05	608.4	30.42
50	0.4	4704.0^{a}	250	8	0.3	5097.6	0.12	-143.6	-17.23
		4704.0	250	10	0.6	5192.0	0.24	-238.0	-57.12
		4704.0	250	12	0.1	5286.4	0.04	-332.4	-13.30
							1.00		439.44

Notes
${ }^{a}$ Fare revenues at 60% capacity for 2000 were $£ 5376000$. Assuming 5% inflation fare revenues for 2001 at 60% capacity will be $£ 5644800$ ($£ 5376000 \times 1.05$). At 70% and 50% capacity utilization fare revenues will be as follows:

$$
\begin{aligned}
& 70 \%=70 / 60 \times £ 5644800=£ 6585600 \\
& 50 \%=50 / 60 \times £ 5644800=£ 4704000
\end{aligned}
$$

${ }^{b}$ Variable costs vary with bus miles which are assumed to remain unchanged. Predicted costs at the different inflation levels are as follows:

$$
\begin{aligned}
8 \% & =(£ 2970000+£ 1750000) 1.08=£ 5097600 \\
10 \% & =(£ 2970000+£ 1750000) 1.10=£ 5192000 \\
12 \% & =(£ 2970000+£ 1750000) 1.12=£ 5286400
\end{aligned}
$$

(c) (ii) The answer to this question requires the preparation of a cumulative probability distribution that measures the cumulative probability of profits/ (losses) being greater than specified levels.
Cumulative probability distribution
Losses greater than $£ 300000=0.04$ probability
Probability of a loss occurring $=0.40$
Profits greater than $£ 600000=0.60$
Profits greater than $£ 700000=0.55$
Profits greater than $£ 800000=0.10$
Profits greater than $£ 1500000=0.10$
(d) The following factors have not been incorporated into the analysis:
(i) Change in the passenger mix.
(ii) Changes in the number of routes and the number of days operation per year.
(iii) Changes in fare structure such as off-peak travel or further concessions for juveniles and senior citizens.
(iv) Changes in cost levels due to factors other than inflation (e.g. more efficient operating methods).

Solution SM 14.2

(a) For each selling price there are three possible outcomes for sales demand, unit variable cost and fixed costs. Consequently, there are 27 possible outcomes. In order to present probability distributions for the two possible selling prices, it would be necessary to compute profits for 54 outcomes. Clearly, there would be insufficient time to perform these calculations within the examination time that can be allocated to this question. It is therefore assumed that the examiner requires the calculations to be based on an expected value approach.

The expected value calculations are as follows:
(i) Variable cost

(£10 + 10\%	$\times 10 / 20$		5.50
£10	$\times 6 / 20$	=	3.00
(£10-5\%)	$\times 4 / 20$	$=$	1.90
			$\underline{10.40}$

(ii) Fixed costs
$£ 82000 \times 0.3=24600$
$£ 85000 \times 0.5=42500$
$£ 90000 \times 0.2=\frac{18000}{\underline{85100}}$
(iii) $£ 17$ selling price
(units)
21000 units $\times 0.2=$
4200
19000 units $\times 0.5=$
16500 units $\times 0.3=$
$\underline{4950}$
$\underline{18650}$
(iv) $£ 18$ selling price 19000 units $\times 0.2=3800$ 17500 units $\times 0.5=8750$ 15500 units $\times 0.3=\frac{4650}{17200}$

Expected contribution

$$
\begin{aligned}
& £ 17 \text { selling price }=(£ 17-£ 10.40) \times 18650=£ 123090 \\
& £ 18 \text { selling price }=(£ 18-£ 10.40) \times 17200=£ 130720
\end{aligned}
$$

The existing selling price is $£ 16$, and if demand continues at 20000 units per annum then the total contribution will be $£ 112000[(£ 16-£ 10.40) \times 20000$ units].

Using the expected value approach, a selling price of $£ 18$ is recommended.
(b) Expected profit $=£ 130720-£ 85100$ fixed costs $=£ 45620$

Break-even point $=$ fixed costs $(£ 85100) /$ contribution per unit $(£ 7.60)$

$$
=11197 \text { units }
$$

Margin of safety $=$ expected demand (17200 units) -11197 units $=6003$ units $\%$ margin of safety $=6003 / 17200=34.9 \%$ of sales
Note that the most pessimistic estimate is above the break-even point.
(c) An expected value approach has been used. The answer should draw attention to the limitations of basing the decision solely on expected values. In particular, it should be stressed that risk is ignored and the range of possible outcomes is not considered. The decision ought to be based on a comparison of the probability distributions for the proposed selling prices. For a more detailed answer see 'Probability distributions and expected value' and 'Measuring the amount of uncertainty' in Chapter 14.
(d) Computer assistance would enable a more complex analysis to be undertaken. In particular, different scenarios could be considered, based on different combinations of assumptions regarding variable cost, fixed cost, selling prices and demand. Using computers would also enable the Monte Carlo simulation to be used for more complex decisions.

Capital investment decisions

Solutions to Chapter 15 questions

Solution SM 15.1

(i) Net present values:

Year	$\mathbf{0 \%}$	$\mathbf{0 \% \%}$		$\mathbf{2 0 \%}$	
	NPV $(£)$	Discount Factor	NPV $(£)$	Discount Factor	NPV $(£)$
0	(142700)	1000	(142700)	1.000	(142700)
1	51000	0.909	46359	0.833	42483
2	62000	0.826	51212	0.694	43028
3	73000	0.751	54823	0.579	42267
NPV	43300		$\underline{9694}$		$\underline{(14922)}$

(ii) Project NPV profile

Solution SM 15.2

(a) The answer should include the following points:

1. Computations of the payback period and accounting rate of return (see below for the calculations), a description of the methods and their benefits and limitations (see text for a discussion of the payback and accounting rate of return methods).
2. A computation of the net present value (see below) and an explanation as to why this method is preferred to the other methods (see text for an explanation).
3. A recommendation that since the project has a positive net present value it should be accepted.
4. A discussion of the difficulties associated with NPV. These include the greater potential for a lack of understanding by non-accountants, difficulties in estimating cash flows over the whole life of the asset and the difficulty in deriving the discount rate.

Computation of the payback period

The cumulative cash flows for years 4 and 5 are $£ 1700000$ and $£ 2200000$. Therefore, the payback period occurs between years 4 and 5 . Assuming that cash flows accrue evenly throughout the year, a cash flow of $£ 300000$ is required in year 5 to reach the payback period. This represents 7 months ($£ 300000 / £ 500000 \times 12$ months). Therefore, the payback period is 4 years and 7 months. This is above the target payback period of 4 years, so the project would be rejected using this method.

Computation of accounting rate of return

Total cash flows $=(£ 400 \times 3)+(£ 500 \times 2)+(£ 450 \times 3)+(£ 400 \times 2)=£ 4350000$
Less depreciation/initial outlay
Total profits over the period

$$
\begin{aligned}
& =£ 2000000 \\
& =£ 2350000 \\
& =£ 235000 \\
& =£ 1000000 \\
& =23.5 \%
\end{aligned}
$$

Average annual profit
Average investment (Initial cost/2)
Accounting rate of return
This is below the target return so the project would be rejected.

Computation of NPV

Year	Cash flows $(£ 000 \mathrm{~s})$	Discount factor $(15 \%)^{\mathrm{a}}$	Present value $(£ 000 \mathrm{~s})$
$1-3$	400	2.283	913.20
$4-5$	500	1.069	534.50
$6-8$	450	1.135	510.75
$9-10$	400	0.531	$\underline{212.40}$
		$\underline{2170.85}$	
Less initial outlay		$\underline{\underline{2000.00}}$	
NPV		$\underline{170.85}$	

Note

${ }^{\text {a }}$ The discount factors are derived by summing the factors for years $1-3,4-5$, 6-8 and 9-10 in the discount tables.
The project has a positive NPV and should be accepted.

Solution SM 15.3

(a) The answer should stress that NPV is considered superior to the payback method and the accounting rate of return because it takes account of the time value of money. For a description of the time value of money you should refer to 'Compounding and discounting' and 'The concept of net present value' in Chapter 15. The answer should also draw attention to the limitations of the payback method and accounting rate of return described in Chapter 15.
(b) (i) To compute the NPV it is necessary to convert the profits into cash flows by adding back depreciation of $£ 25000$ per annum in respect of the asset purchased at the end of year 3 for $£ 75000$. The NPV calculation is as follows:

Year	Cash flow $(\boldsymbol{£})$	Discount factor	NPV
3	(75000)	0.675	(50625)
4	35000	0.592	20720
5	28000	0.519	14532
6	27000	0.465	$\underline{12555}$
			$\underline{(2818})$

(ii) The cash flows are based on the assumption that the reinvestment in R is not made at the end of year 3 .

Year	Discount factor	Project T cash flows a $(£)$	Project T NPV $(£)$	Project R cash flows $(£)$	Project R NPV $(£)$
1	0.877	27000	23679	$40000(3)^{c}$	35080
2	0.769	30000	23070	45000	34605
3	0.675	32000	21600	$45000(4)^{d}$	30375
4	0.592	44000	26048		
5	0.519	40000^{b}	$\underline{20760}$		$\underline{100060}$
			$\underline{115157}$		$\underline{40000}$
Investment outlay		$\underline{70000}$		$\underline{45060}$	
NPV		$\underline{457}$			

$$
\begin{array}{ll}
\text { Payback: } & \mathrm{T}=2 \text { years }+(£ 70000-£ 57000) / £ 32000=2.41 \text { years } \\
& \mathrm{R}=1 \text { year }+(£ 60000-£ 40000) / 45000=1.44 \text { years }
\end{array}
$$

The decision should be to invest in Project T because it has the higher NPV.

Notes

${ }^{a}$ Yearly profits plus ($£ 70000-£ 10000$)/5 years depreciation.
${ }^{b} £ 18000$ profits $+£ 12000$ depreciation $+£ 10000$ sale proceeds.
${ }^{c}$ Profits plus $£ 60000 / 3$ years depreciation.
${ }^{d} £ 75000$ investment outlay $-£ 50000=$ Annual profit (£25 000). Cash flow $=£ 25000$ profit $+£ 20000$ depreciation.
(c) For an explanation of the meaning of the term 'discount rate' see 'The opportunity cost of an investment' in Chapter 15. The discount rate can be derived from observations of the returns shareholders require in financial markets. Where a project is to be financed fully by borrowing, the cost of borrowing could be used as a basis for determining the discount rate.

Solution SM 15.4

The report should include the information contained in items (a) to (c) below:
(a) Depreciation is not a cash flow. The operating net cash inflows (before tax) therefore consist of sales less materials and labour costs. The NPV calculation is as follows:

(b) Because corporation taxes are payable on taxable profits and not accounting profits depreciation has been replaced by the Inland Revenue's allowable depreciation (known as written-down allowances). The net cost of the asset is $£ 150000$ and written-down allowances received amounted to $£ 65625$ ($£ 37500$ $+£ 28125)$. Therefore a balancing allowance is available at the end of the asset's life of $£ 84375$ ($£ 150000$) - $£ 65625$). The Inland Revenue allows the net cost of the asset to be claimed over its life with a balancing adjustment in the final year. Because taxation is normally payable nine months after the company's accounting year end the taxation cash flows are shown to be delayed by one year. This is a simplification of the actual situation but is normally sufficiently accurate for appraising investments.
(c) Other factors to be considered include:
(i) The probability of obtaining a subsequent contract. There would be no need to purchase a further machine and the project would therefore yield a positive NPV.
(ii) The negative NPV is very small and if the company has other profitable activities it may be worthwhile accepting in order to have the chance of obtaining a second contract and establishing long-term relationships with a large multinational customer.
(iii) Capacity that is available. If other profitable opportunities have to be foregone to undertake the contract because of shortage of capacity then the opportunity cost should be included in the financial analysis.

The budgeting process

Solutions to Chapter 16 questions

Solution SM 16.1

(a) Production budget

Product	A	B
Sales	2000	1500
Opening stock	(100)	(200)
Closing stock		
$(10 \% \times$ sales level $)$	$\underline{200}$	$\underline{150}$
	$\underline{\underline{2100}}$	$\underline{\underline{1450}}$

(b) Materials usage budget

Material type

\mathbf{X}	\mathbf{Y}
$\mathbf{K g}$	Litres
8550	
	7900

(c) Materials purchases budget

Usage

8550	
(300)	
850	
9100	(1000)
$\times £ 10$	8000
$£ 91000$	

(d) Labour budget
$(2100 \times 4)+(1450 \times 2)$

Skilled hours
11300
$\times £ 12$
$£ 135600$

Semi-skilled hours
11450
$\times £ 8$
$\underline{£ 91600}$

[^1]
Solution SM 16.2

(a) Workings

Budgeted sales (units and value)

Product	Units	Price	Value ($£$)
F1	34000	$£ 50.00$	1700000
F2	58000	$£ 30.00$	$\underline{1740000}$
			$\underline{3440000}$

Budgeted production (units)

Product	Sales	Stock increase	Production
F1	34000	1000	35000
F2	58000	2000	60000

(i) Component purchase and usage budget (units and value)

	Component	Component	
Product	$\mathbf{C 3}$	$\mathbf{C 4}$	Total
F1	280000 u	140000 u	
F2	240000 u	$\underline{50000 \mathrm{u}}$	
	$\overline{520000 \mathrm{u}}$	$\overline{320000 \mathrm{u}}$	
Value	$£ 650000$	$£ 576000$	$£ 1226000$

(ii) Direct labour budget (hours and value)

Product	Assembly	Finishing	Total
F1	17500 hours	7000 hours	
F2	$\underline{15000}$ hours	$\underline{10000}$ hours	
	$\frac{32500}{17000}$		
Value	$£ 162500$	$£ 102000$	$£ 264500$

(iii) Departmental manufacturing overhead recovery rates

	Assembly	Finishing
Total overhead cost per month	$£ 617500$	$£ 204000$
Total direct labour hours	32500	17000
Overhead rate (per direct labour hour)	$£ 19.00$	$£ 12.00$

(iv) Selling overhead recovery rate

Total overhead cost per month
Total sales value (Month 9)
Selling overhead rate
£344000
£3 440000
10%
(v) Closing stock budget

Product	Units	Cost $^{\mathbf{a}} £$	Value $£$
F1	1000	32.80	32800
F2	2000	19.40	$\underline{38800}$
			$\underline{71600}$

Note
${ }^{\text {a }}$ See part (b) for the calculation of the cost per unit
(b) Standard unit costs for month 9

Product

(c) Budgeted profit and loss account for month 9

Components	$(£)$
Direct labour	1226000
Manufacturing overhead	264500
Subtotal	821500
Less closing stock	2312000
Cost of sales	71600
Selling overhead	$\underline{240400}$
Total cost	2584400
Sales	$\underline{3440000}$
Net profit	$\underline{855600}$

(d) The company currently uses an absorption costing system but computes predetermined overhead rates on a monthly basis. It is preferable to calculate a predetermined overhead rate at annual intervals. This is because a large amount of overheads are likely to be fixed in the short-term whereas activity will fluctuate from month to month, giving large fluctuations in overhead rates if monthly rates are used. An average, annualised rate based on the relationship of total annual overhead to total annual activity is more representative of typical relationships between total costs and volume/activity than a monthly rate. For a more detailed discussion of these issues you should refer to 'Budgeted overhead rates' in Chapter 4.

Solution SM 16.3

(a) (i) Cash budget

	January $(£)$	February $(£)$	March $(£)$	April $(£)$
Balance b/d	10000	9000	3890	9090
Sales (W1)	-	$\underline{15200}$	$\underline{57100}$	$\underline{80000}$
	10000	$\underline{24200}$	60990	89090
Purchases (W3)	-	11550	24500	26950
Wages (W4)	-	4800	19800	22200
Variable overhead (W5)	-	960	4600	7080
Fixed overhead (W6)	$\underline{1000}$	$\underline{3000}$	$\underline{3000}$	$\underline{3000}$
	1000	$\underline{20310}$	51900	$\underline{59230}$
Balance c/d	$\underline{9000}$	$\underline{3890}$	$\underline{9090}$	$\underline{29860}$

Workings
 (W1) Sales

	Amount	$\mathbf{2 0 \%}$	Discount 5%	Net	$\mathbf{5 0 \%}$	$\mathbf{2 0 \%}$	$\mathbf{8 \%}$	Total cash
receipts								

(W2) Production:

					Total January
February	800				800
March	2400	900			3300
April		2700	1000	3700	
May			3000	1000	4000
	$\overline{3200}$	$\underline{3600}$	$\underline{4000}$	$\underline{3000}$	
		$\underline{4000}$			

(W3) Purchases at $£ 7$ per unit:

	Production	Current month	Following month	Total	Value (£)
January	February (3300)		1650	1650	11550
February	March (3700)	1650	1850	3500	24500
March	April (4000)	1850	2000	3850	26950

(W4) Direct wages:

February payment	$800 \times £ 6=£ 4800$
March payment	$3300 \times £ 6=£ 19800$
April payment	$3700 \times £ 6=£ 22200$

(W5) Variable overhead at $£ 2$ per unit:

Production	February $(£)$	March $(£)$	April $(£)$	May $(£)$
January $(£ 1600)$	960	640		
February $(£ 6600)$		3960	2640	
March $(£ 7400)$	$\overline{960}$	$\overline{4600}$	$\underline{4440}$	$\underline{7080}$
	$\underline{2960}$	$\underline{2960}$		

(W6) Fixed overhead:

January

January $(£)$	February $(£)$	March $(£)$	April $(£)$
1000	2000		
	1000	2000	
		1000	2000
$\overline{1000}$	$\overline{3000}$	$\overline{3000}$	$\underline{3000}$
$\underline{3000}$			

(ii) It is assumed that the question relates to the amount received from customers in May and not the amount due. The answer is $£ 93400$ (see W1).
(b) A software package would eliminate the tedious arithmetical calculations that are necessary to produce cash budgets. Furthermore, it would enable alternative scenarios to be considered, such as what the outcome would be if any of the parameters were changed.

Management control systems

Solutions to Chapter 17 questions

Solution SM 17.1

Task 1
Reclamation Division Performance Report - 4 weeks to 31 May:
Original budget 250 tonnes
Actual output 200 tonnes

	Budget based on 200 tonnes	Actual	Variance	Comments
Controllable expenses:				
Wages and social security costs a	43936	46133	2197 A	
Fuel b	15000	15500	500 A	
Consumables c	2000	2100	100 A	
Power d	1500	1590	90 A	
Directly attributable overheads e	$\underline{20000}$	$\underline{21000}$	$\frac{1000 \mathrm{~A}}{82436}$	$\underline{86323}$
	$\underline{3887 \mathrm{~A}}$	$\underline{ }$		
Non-controllable expenses: $^{\text {Plant maintenance }}$				
Central services				

Notes
${ }^{a} 6$ employees $\times 4$ teams $\times 42$ hours per week $\times £ 7.50$ per hour $\times 4$ weeks $=£ 30240$.
${ }^{b} 200$ tonnes $\times £ 75$
c 200 tonnes $\times £ 10$
${ }^{d} £ 500+(£ 5 \times 200)=£ 1500$
${ }^{e}$ It is assumed that directly attributable expenses, plant maintenance and central services are non-variable expenses.

Task 2

(a) (i) Past knowledge can provide useful information on future outcomes but ideally budgets ought to be based on the most up-to-date information. Budgeting should be related to the current environment and the use of past information that is two years old can only be justified where the operating conditions and environment are expected to remain unchanged.
(ii) For motivation and planning purposes budgets should represent targets based on what we are proposing to do. For control purposes budgets should be flexed based on what was actually done so that actual costs for actual output can be compared with budgeted costs for the actual output. This ensures that valid comparisons will be made.
(iii) For variable expenses the original budget should be reduced in proportion to reduced output in order to reflect cost behaviour. Fixed costs are not adjusted since they are unaffected in the short term by output changes. Flexible budgeting ensures that like is being compared with like so that reduced output does not increase the probability that favourable cost variances will be reported. However, if less was produced because of
actual sales being less than budget this will result in an adverse sales variance and possibly an adverse profit variance.
(iv) Plant maintenance costs are apportioned on the basis of capital values and therefore newer equipment (with higher written-down values) will be charged with a higher maintenance cost. Such an approach does not provide a meaningful estimate of maintenance resources consumed by departments since older equipment is likely to be more expensive to maintain. The method of recharging should be reviewed and ideally based on estimated usage according to maintenance records. The charging of the overspending by the maintenance department to user departments is questionable since this masks inefficiencies. Ideally, maintenance department costs should be recharged based on actual usage at budgeted cost and the maintenance department made accountable for the adverse spending (price) variance.
(v) The comments do not explain the causes of the variances and are presented in a negative tone. No comments are made, nor is any praise given, for the favourable variances.
(vi) Not all variances should be investigated. The decision to investigate should depend on both their absolute and relative size and the likely benefits arising from an investigation.
(vii) Central service costs are not controllable by divisional managers. However, even though the divisional manager cannot control these costs there is an argument for including them as non-controllable costs in the performance report. The justification for this is that divisional managers are made aware of central service costs and may put pressure on central service staff to control such costs more effectively. It should be made clear to divisional managers that they are not accountable for any non-controllable expenses that are included in their performance reports.

Solution SM 17.2

Task 1
(a)

	Quarter 1 units	Quarter 2 units	Quarter 3 units	Quarter 4 units
Actual sales volume	420000	450000	475000	475000
Seasonal variation	$\underline{+25000}$	$\underline{+15000}$	-	$\underline{240000}$
Deseasonalised sales volumes	$\underline{395000}$	$\underline{435000}$	$\underline{475000}$	$\underline{515000}$

(b) The trend is for sales volume to increase by 40000 units each quarter:

Forecast for next year	Quarter 1 units	Quarter 2 units	Quarter 3 units	Quarter 4 units
Trend projection	555000	595000	635000	675000
Seasonal variation	$\underline{+25000}$	$\underline{+15000}$	-	$\underline{-40000}$
Forecast sales volumes	$\underline{580000}$	$\underline{610000}$	$\underline{635000}$	$\underline{\underline{635000}}$

Task 2
(a) Seasonal variations represent consistent patterns in sales volume that occur throughout each year. For example, the seasonal variation of +25000 for Quarter 1 indicates that sales volume in the first quarter tends to be 25000 units higher than the underlying trend in sales. In contrast, the seasonal variation of -40000 in Quarter 4 indicates that sales in this quarter tend to be 40000 units lower than the underlying trend in sales.

To derive the deseasonalised data the seasonal variations must be removed so that a trend can be observed. The above figures indicate an increase of 40000 units per quarter. This trend is concealed when the actual data is observed because of the distorting effects of seasonal variations. Observations of the actual data suggests that the rate of increase in sales is declining.
(b) Provided that the observed trend in deseasonalised data continues the deseasonalised data can be used to project the trend in future sales. The trend values are adjusted by seasonal variations in each quarter to predict actual sales.

Task 3

(a) A fixed budget is a budget for the planned level of activity and budgeted costs are not adjusted to the actual level of activity. A fixed budget is used at the planning stage because an activity level has to be initially determined so that all department activities can be coordinated to meet the planned level of activity. However, it is most unlikely that actual activity will be the same as the planned level of activity. For example, if the actual level of activity is greater than budgeted level of activity then those costs that vary with the level of activity will be greater than the budgeted costs purely because of changes in activity. It is clearly inappropriate for variable costs to compare actual costs at one level of activity with budgeted costs at another level of activity. The original fixed budget must be adjusted to reflect the budgeted expenditure at the actual level of activity. This procedure is called flexible budgeting. The resulting comparison of actual costs with a flexible budget is more meaningful for cost control because the effect of the change in the activity level has been eliminated.
(b) Possible activity indicators include number of deliveries made, miles travelled and journeys made.
(c) See 'Flexible budgets' in Chapter 17 for the answer to this question.

Task 4
(a) Production budget for product Q

Forecast sales for year	(units)
Increase in stock $(15 \% \times 1200)$	$\underline{180}$
Finished units required	$\underline{18315}$
Quality control loss $(1 / 99)$	$\underline{185}$
Total units input to production	$\underline{1850}$

(b) Direct labour budget for product Q

Active labour hours required (18500×5)	(hours)
Idle time allowance $(7.5 / 92.5)$	92500
Total hours to be paid for	$\underline{7500}$
Standard hourly rate	$\underline{100000}$
Budgeted labour cost	$£ 600000$

(c) Material usage budget for material M

	$\mathbf{(k g})$
Material required for processing	166500
18500 units $(\times 9 \mathrm{~kg})$	$\underline{18500}$
Wastage (10/90)	$\underline{185000}$
Material usage for year	

(d) Material purchases budget for material M

	$(\mathbf{k g})$
Material required for production input	185000
Increase in material stocks (12%)	960
Expected loss in stores	1000
Material purchases required	$\underline{186960}$

Task 5
The implications of the shortage is that the budget plans cannot be achieved and the availability of material is the limiting factor. If the limiting factor cannot be removed the materials purchase budget should be the first budget to be prepared and all the other budgets coordinated to ensure the most efficient usage of materials. The following four possible actions could be taken to overcome the problem:
(i) Seek alternative supplies for material M. Possible problems include the reliability and quality of materials delivered by new suppliers. New suppliers should be carefully vetted prior to entering into any contracts or making company plans dependent on deliveries from new suppliers.
(ii) Reduce the budgeted sales of product Q . This will lead to loss in profits and the possible permanent loss of customers to competitors if the competitors are able to meet customer demand.
(iii) Reduce the stock levels for product Q and material M . The danger with this course of action is that stocks may not be available when required which could lead to disruptions in production and lost sales.
(iv) Reduce the wastage of material M and the defective output of product Q . This course of action will cause problems if quality standards are reduced resulting in inferior quality output. This could have a harmful effect on future sales. Problems will not be caused if quality standards are maintained and improved working practices result in a reduction of waste and defective output.

Solution SM 17.3

Task 1 (a)

Calculation of unit variable costs				
	Original budget	Revised budget	Difference	Variable unit $\operatorname{cost}^{\text {a }}$
Units	24000	20000	4000	
Variable costs				
Material	216000	180000	£36000	£9
Labour	288000	240000	£48000	£12
Semi-variable costs				
Heat, light and power	31000	27000	$£ 4000$	$£ 1$
Analysis of heat, light and power				
Variable cost	$£ 24000$	£20 000		
Total cost	£31 000	£27000		
Fixed cost	£7000	£7000		

Note
${ }^{\text {a }}$ Unit variable cost $=$ change in total cost/change in volume
Task 1 (b)

	Revised budget	Actual results		Variance
Production and sales (units)	22000	22000		
Variable costs	(£)	(£)		(£)
Material $22000 \times £ 9$	198000	214320	$(£ 206800+£ 7520)$	6320 (A)
Labour $22000 \times £ 12$	264000	255200		8800 (F)
Semi-variable cost				
Heat, light and power $(22000 \times £ 1)+£ 7000$	29000	25880	(£33 400 - £7520)	3120 (F)
Fixed costs				
Rent, rates and depreciation	40000	38000		2000 (F)
	531000	533400		2400 (A)

Task 2 (a)

The original statement compares the actual cost of producing 22000 units with a budget for 20000 units. This is not comparing like with like. The flexible budget shows what budgeted costs would have been for the actual production level of 22000 units. Because actual production was greater than budgeted production of 20000 units variable costs are likely to be higher and this comparison will result in an adverse effect on variable cost variances. The fact that overall variances are smaller when comparisons are made with the flexible budget is due to flexing the budget and not to participative budgeting.
Task 2 (b)
The report should indicate that favourable variances may have arisen for the following reasons:
(i) Controllable factors due to the more efficient usage of direct labour and heating, light and power.
(ii) Budget participation may have resulted in the creation of slack through an overstatement of budgeted costs.
(iii) Uncontrollable factors such as a reduction in the prices charged to Rivermede for rent and rates.

Task 2 (c)
The report should include the following items:
(i) The increased sales may have been due to a general increase in demand rather than the effort of the salesforce.
(ii) The original budget of 24000 units may have been over-estimated or the revised budget of 20000 units may have been understated due to the sales director creating slack by deliberately understating demand.

Solution SM 17.4

Task 1 (a)
For $2001 x$ takes on a value of 9 .
Therefore annual demand $(y)=640+(40 \times 9)=1000$
weekly demand $=1000 / 25=40$ holidays
Task 1 (b)
Weaknesses of the least squares regression formula include:
(i) The formula assumes a linear relationship based on time but demand for holidays may not be a linear function of time.
(ii) Seasonal variations are ignored. Demand may vary throughout the holiday season with some holiday weeks being more popular than others.
(iii) It ignores changes in holidaymakers' tastes such as a change in demand from short haul to long haul or 10-day holidays to short-break holidays.
(iv) Cyclical fluctuations are ignored. Demand for holidays is likely to vary depending on the state of the economy, such as boom or recession.
Linear regression is covered in Chapter 10.
Task 2 (a)
Revised cost statement 10 days ended 27 November

Flexed budget	Note	Budget $(£)$	Actual $(£)$	Variance $(£)$
Aircraft seats	1	18000	18600	600 A
Coach hire		5000	4700	300 F
Hotel rooms	2	14300	14200	100 F
Meals	4560	4600	40 A	
Tour guide	3	1800	1700	100 F
Advertising		$\underline{2000}$	$\underline{1800}$	$\underline{200 \mathrm{~F}}$
		$\underline{45660}$	$\underline{45600}$	$\underline{60} \mathrm{~F}$

Notes

1. $£ 450 \times 40$ because purchases are in blocks of 20 seats
2. $£ 70 \times 10$ days $\times 34$ tourists $\times 0.5 \quad £ 11900$
$£ 60 \times 10$ days $\times 4$ tourists $\quad £ 2400$

$$
£ 14300
$$

3. $£ 12 \times 10$ days $\times 38$ tourists

Task 2 (b)
The original budget is a fixed budget based on the anticipated demand when the budget was set. If actual demand is different from anticipated demand a fixed budget is inappropriate for control purposes because it does not ensure that like is compared with like. The revised flexible budget shows what costs should have been for the volume of passengers taken on the holiday. This ensures that a more meaningful comparison of budget and actual costs is made.
Task 2 (c)
The following factors should be considered:
(i) the absolute amount of the variance;
(ii) the relative amount of the variance expressed as a percentage of budgeted costs;
(iii) the trend in variances by examining the cumulative variances for the period;
(iv) whether or not the variance is controllable;
(v) the cost and benefits from investigating the variance.

Standard costing and variance analysis

Solutions to Chapter 18 questions

Solution SM 18.1

(a) Standard cost of output produced (18 000 units)

		$(£)$ Direct materials Direct labour Variable production overhead Fixed production overhead	

Notes
${ }^{a}$ (Standard price - Actual price) \times Actual quantity $(£ 12-£ 836000 / 76000) \times 76000=£ 76000(\mathrm{~F})$
${ }^{b}$ (Standard quantity - Actual quantity) \times Standard price $(18000 \times 4 \mathrm{~kg}=72000-76000) \times £ 12=£ 48000(\mathrm{~A})$
${ }^{c}$ (Standard rate - Actual rate) \times Actual hours $(£ 7-£ 604800 / 84000) \times 84000=£ 16800(\mathrm{~A})$
${ }^{d}$ (Standard hours - Actual hours) \times Standard rate $(18000 \times 5 \mathrm{hrs}=90000-84000) \times £ 7=£ 42000(\mathrm{~F})$
${ }^{e}$ (Actual hours \times Standard rate) - Actual cost $(84000 \times £ 2=£ 168000-£ 172000=£ 4000(\mathrm{~A})$
${ }^{f}$ (Standard hours - Actual hours) \times Standard rate $(18000 \times 5 \mathrm{hrs}=90000-84000) \times £ 2=£ 12000(\mathrm{~F})$
${ }^{8}$ Budgeted fixed overheads - Actual fixed overheads $(20000 \times £ 50=£ 1000000-£ 1030000)=£ 30000(\mathrm{~A})$
${ }^{h}$ (Actual output - Budgeted output) \times Standard rate $(18000-20000) \times £ 50=£ 100000(\mathrm{~A})$
(c) The statement in (b) can be used to provide a detailed explanation as to why actual cost exceeded standard cost by $£ 68800$ for the output achieved. The statement provides attention-directing information by highlighting those areas that require further investigation. Thus management can concentrate their scarce time on focusing on those areas that are not proceeding according to plan. By investigating variances, management can pinpoint inefficiencies and take steps to avoid them re-occurring. Alternatively, the investigation may indicate that the current standards are inappropriate and need changing to take account of the changed circumstances. This may result in an alteration in the plans or more up-to-date information for decision-making.

Solution SM 18.2

(a) Budgeted contribution $=$ Standard unit contribution $(£ 1.99-£ 1.39=£ 0.60) \times$ $50000=£ 30000$
Actual contribution $=£ 96480-(£ 58450+£ 6800+£ 3250)=£ 27980$
(b) Sales margin price $=($ Actual price - Standard price $) \times$ Actual sales volume

$$
\begin{aligned}
= & \text { Actual sales }(£ 96480)-\text { Actual sales volume }(49700) \times \\
& \text { Standard price }(£ 1.99) \\
= & £ 2423 \mathrm{~A} \text { (note that the same answer would be obtained } \\
& \text { using contribution margins in the above formula) }
\end{aligned}
$$

Sales margin volume $=($ Actual volume - Budgeted volume $) \times$ Standard unit contribution $=(49700-50000) \times £ 0.60=£ 180 \mathrm{~A}$
Ingredients price $=(S P-A P) A Q=(A Q \times S P)-(A Q \times A P)$

$$
=(55000 \times £ 1.18 / 1.08=£ 60093)-£ 58450=£ 1643 \mathrm{~F}
$$

Ingredients usage $=(\mathrm{SQ}-\mathrm{AQ}) \mathrm{SP}=(49700 \times 1.08=53676-55000)$ £1.18/1.08 = £1447A
Wage rate $\quad=(S P-A P) A H=(A H \times S P)-(A H \times A P)$ $=\left(1200 \times £ 6^{\mathrm{a}}=£ 7200\right)-£ 6800=£ 400 \mathrm{~F}$
Labour efficiency $=(\mathrm{SH}-\mathrm{AH}) \mathrm{SP}=(49700 \times 1.5$ minutes $=1242.5$ hours -1200 hours $) \times £ 6=£ 255 \mathrm{~F}$
Variable conversion price $=(\mathrm{SP}-\mathrm{AP}) \mathrm{AH}=(\mathrm{AH} \times \mathrm{SP})-(\mathrm{AH} \times \mathrm{AP})$ $=\left(1200 \times £ 2.40^{\mathrm{b}}=£ 2880-£ 3250=£ 370 \mathrm{~A}\right.$
Variable conversion efficiency $=(\mathrm{SH}-\mathrm{AH}) \mathrm{SP}=(49700 \times 1.5$ minutes $=$ 1242.5 hours -1200 hours) $\times £ 2.40=£ 102 \mathrm{~F}$

Notes
${ }^{\text {a }}$ Actual price paid for labour $=£ 0.15 / 1.5$ minutes $=£ 0.10$ per minute $=£ 6$ per hour
${ }^{\mathrm{b}}$ Actual variable overhead price $=£ 0.06 / 1.5$ minutes $=£ 0.04$ per minute $=$ $£ 2.40$ per hour

Reconciliation statement

Budgeted contribution
Sales volume contribution variance
Standard contribution on actual sales
Sales price variance
(£)
30000
180 (A)
29820
2423 (A)
$27 \widehat{397}$

Cost variances		A	$\begin{gathered} \text { F } \\ 1643 \end{gathered}$	
Ingredients:	Price			
	Usage	1447		
Labour	Rate		400	
	Efficiency		255	
Conversion cost	Expenditure	370		
	Efficiency		102	
Total		$\underline{1817}$	$\underline{2400}$	583
Actual contribution				27980

(c) The answer should point out that in any environment fixed overhead volume variances are not particularly helpful for cost control (see 'Volume variance' in Chapter 18 for an explanation of this point). Therefore, a marginal costing variance analysis approach is preferable for most types of environment.

Solution SM 18.3

(a) Wage rate variance $=(\mathrm{SP}-\mathrm{AP}) \mathrm{AH}=(\mathrm{SP} \times \mathrm{AH})-(\mathrm{AP} \times \mathrm{AH})$

$$
\begin{aligned}
& =(£ 5 \times 53 \text { workers } \times 13 \text { weeks } \times 40 \mathrm{hrs})-£ 138500 \\
& =£ 700 \mathrm{~A} \\
& =(\mathrm{SH}-\mathrm{AH}) \mathrm{SP} \\
\text { Labour efficiency } & \\
\text { SH (Standard hours) } & =(35000 \times 0.4 \mathrm{hrs})+(25000 \times 0.56 \mathrm{hrs}) \\
& =28000 \\
\text { AH (Actual hours) } & =53 \text { workers } \times 13 \text { weeks } \times 40 \mathrm{hrs}=27560
\end{aligned}
$$

Labour efficiency $=(\mathrm{SH}-\mathrm{AH}) \mathrm{SP}$

Variance $\quad=(28000-27560) \times £ 5=£ 2200 \mathrm{~A}$
(b) Material price variance $=(\mathrm{SP}-\mathrm{AP}) \mathrm{AQ}$

$$
=(\mathrm{AQ} \times \mathrm{SP})-(\mathrm{AQ} \times \mathrm{AP})
$$

$$
£ 430 \mathrm{~F} \text { (given) }=47000 \mathrm{SP}-£ 85 \overline{110}
$$

$$
\text { SP }(\text { Standard price })=\frac{£ 430+85110}{47000}
$$

$$
=£ 1.82
$$

Material usage variance $=(S Q-A Q) S P$

$$
=(S Q \times S P)-(A Q \times S P)
$$

$$
£ 320.32 \mathrm{~A} \text { (given) } \quad=£ 1.82 \mathrm{SQ}-(33426 \times £ 1.82)
$$

$$
-£ 320.32 \mathrm{~A} \quad=£ 1.82 \mathrm{SQ}-£ 60835.32
$$

$$
£ 1.82 \mathrm{SQ} \quad=£ 60515
$$

SQ $\quad=£ 60515 / £ 1.82=33250$
Note that SQ $\quad=$ Actual production (35000 units) \times Standard usage
Therefore $35000 \times$ Standard usage $=33250$
Standard usage $\quad=33$ 250/35 000
$=0.95 \mathrm{~kg}$ per unit of component X
(c) For the answer to this question you should refer to the detailed illustration of the budget process shown in Chapter 16. In particular, the answer should indicate that if sales are the limiting factor the production budget should be linked to the sales budget. Once the production budget has been established for the two components, the production quantity of each component multiplied by the standard usage of material A per unit of component output determines the required quantity of material to meet the production requirements. The budgeted purchase quantity of material A consists of the quantity to meet the production usage requirements plus or minus an adjustment to take account of any planned change in the level of raw material stock.

Solution SM 18.4

(a) (i) Sales margin volume variance (Marginal costing):
(Actual volume - Budgeted volume) \times Standard contribution margin per unit
$(9500-10000) \times$ Standard margin $(S M)=£ 7500 A$
$500 \mathrm{SM}=7500$
Standard margin $=£ 15$
(ii) Sales margin volume variance (Absorption costing):
(Actual volume - Budgeted volume) \times Standard profit margin per unit
(9500-10 000) \times Standard margin $(S M)=£ 4500 \mathrm{~A}$
500 SM = £4500
Standard profit margin per unit $=£ 9$
(iii) Fixed overhead volume variance:
(Actual production - Budgeted production) \times Standard rate
(9700-10000) \times Standard rate $=£ 1800 \mathrm{~A}$
Standard fixed overhead rate per unit $=£ 6$
Budgeted fixed overheads $=10000$ units $\times £ 6=£ 60000$
Fixed overhead expenditure variance $\quad=£ 2500 \mathrm{~F}$
Actual fixed overheads ($£ 60000-£ 2500)=£ 57500$
(b) Absorption costing unitises fixed overheads and treats them as product costs whereas marginal costing does not charge fixed overheads to products. Instead, the total amount of fixed overheads is charged as an expense (period cost) for the period. A fixed overhead volume variance only occurs with an absorption costing system. Because marginal costing does not unitise fixed costs product margins are expressed as contribution margins whereas absorption costing expresses margins as profit margins. For a more detailed answer you should refer to the section on standard absorption costing in Chapter 18.
(c) See the section on volume variance in Chapter 18 for the answer to this question.
(d) See an illustration of ABC and traditional product costing systems in Chapter 13 and the section on activity-based cost management in Chapter 17 for the answer to this question.

Solution SM 18.5

(a) Variance analysis

Material price $=($ standard price - actual price $) \times$ actual purchases
$\mathrm{X}=(£ 20-£ 20.50) \times 9000$
$=£ 4500 \mathrm{~A}$
$\mathrm{Y} \quad=(£ 6-£ 5.50) \times 5000$
$=£ 2500 \mathrm{~F}$
Material usage $=($ standard usage - actual usage $) \times$ standard price
$X \quad=(800 \times 10 \mathrm{~kg}-7800 \mathrm{~kg}) \times £ 20$
$=£ 4000 \mathrm{~F}$
$\mathrm{Y} \quad=(800 \times 5$ litres -4300 litres $) \times £ 6$

$$
=£ 1800 \mathrm{~A}
$$

Wage rate $=$ [standard rate $(£ 6)-$ actual rate $(£ 24150 / 4200)]$
\times actual hours (4200)
$=£ 1050 \mathrm{~F}$

```
Labour efficiency \(=[\) standard hours \((800 \times 5 \mathrm{hrs})-\) actual hours (4200)]
    \(\times\) standard rate (£6)
    \(=£ 1200 \mathrm{~A}\)
```

Fixed overhead expenditure $=$ budgeted $\operatorname{cost}(10800 / 12 \times £ 50)$

- actual cost (£47 000)

$$
=£ 2000 \mathrm{~A}
$$

Volume efficiency $=$ [standard hours ($800 \times 5 \mathrm{hrs}$) - actual hours (4200)]

$$
\times(£ 50 / 5 \text { hours })
$$

$$
=£ 2000 \mathrm{~A}
$$

Volume capacity ${ }^{a}=$ [actual hours (4200) $-{\left.\text { budgeted } \text { hours }^{b}(4500)\right]}^{\text {(4) }}$ \times FOAR (£50/5 hours)

$$
=£ 3000 \mathrm{~A}
$$

Notes
${ }^{a}$ Note that the CIMA Terminology (at the time of setting the examination) described the volume variance as being equivalent to the volume capacity variance.
${ }^{b}$ Budgeted hours $=$ monthly budgeted output $(10800 / 12) \times 5 \mathrm{hrs}$
(b)

Stores control

K Ltd: $X(A Q \times S P)$
C Ltd: $\mathrm{Y}(\mathrm{AQ} \times \mathrm{SP})$
Material usage variance (X)

$(£)$		$(£)$
180000	WIP: $(\mathrm{SQ} \times \mathrm{SP})$	160000
30000	WIP: $(\mathrm{SQ} \times \mathrm{SP})$	24000
4000	Material usage variance (Y)	1800
	Balance	$\underline{28200}$
$\underline{£ 214000}$		$\underline{£ 214000}$

Wages control account

Cash
 PAYE and NI
 Accrued wages
 Wage rate variance

(£)

20150	Wages owing b/fwd	6000
5000	Labour efficiency	1200
5000	WIP $($ SQ \times SP $)$	24000
1050		$\underline{£ 31200}$
$\underline{£ 31200}$		

WIP control account

(£)

160000 Finished goods control a/c
24000
24000
40000
$£ 248000$

Fixed overhead control

	(£)		(£)
Expense creditors	33000	WIP (SQ \times SP)	40000
Depreciation provision	14000	Expenditure variance	2000
		Efficiency variance	2000
		Capacity variance	3000
	$\underline{£ 47000}$		$\underline{£ 47000}$

Finished goods control

WIP control	(£)		(£)
	£248000	Cost of sales	$£ 248000$
	Cost of sales		
Finished goods control	$\begin{gathered} (£) \\ £ 248000 \end{gathered}$	Profit and loss (P/L)	$\begin{gathered} (£) \\ £ 248000 \end{gathered}$

	(£)		(£)
K Ltd: X	4500	C Ltd: Y	2500
		P/L	2000
	$\overline{£ 4500}$		$\overline{£ 4500}$
	Material	sage varian	

	$(\mathbf{£})$		$(£)$
Stores control: Y	1800	Stores control: X	4000
P/L	$\underline{2200}$		$\underline{£ 4000}$

Labour rate variance
(£)
(£)
P/L
£1050 Wages control $£ 1050$

Labour efficiency variance

	$(\mathbf{£})$	$(£)$
Wages control	$\underline{1200}$	P / L
	$\underline{1200}$	

Fixed overhead expenditure variance

Overhead control	(£)		(£)
	2000	P/L	2000
Fixed overhead efficiency variance			
	(£)		(£)
Overhead control	$\underline{2000}$	P/L	$\underline{2000}$

(c) The difference of $£ 250$ in the accounts is due to the fact that the material price variance has been calculated on purchases (instead of usage) and written off as a period cost. In the question the raw material stocks are recorded at actual cost, and therefore the $£ 250$ is included in the stock valuation and will be recorded as an expense next period.

[^0]: ${ }^{\text {a }}$ The company operates a just-in-time inventory policy, and receives each component once per production run.

[^1]: Note
 ${ }^{\text {a }}$ Material Closing Stock
 Material X $(2000 \times 2+1500 \times 3) \times 10 \%=850$
 Material $Y(2000 \times 1+1500 \times 4) \times 10 \%=850$

