

Statistics Symbols

Alphabetical Statistical Symbols

Symbol	Text Equivalent	Meaning	Formula	Link to Glossary (if appropriate)
а		Y- intercept of least square regression line	$\mathbf{a} = \mathbf{\bar{y}} - \mathbf{b}\mathbf{\bar{x}}$, for line $\mathbf{y} = \mathbf{a} + \mathbf{b}\mathbf{x}$	<u>Regression</u> : y on x
b		Slope of least squares regression line	$b = \frac{\sum(x-\bar{x})(y-\bar{y})}{\sum(x-\bar{x})^2}$ for line $y = a + bx$	<u>Regression</u> : y on x
B(n,p)	Binomial distribution with parameters n and p	Discrete probability distribution for the probability of number of successes in n independent random trials under the identical conditions.	If X follows $B(n,p)$ then, $P(X = r) = {}^{n}c_{r} p^{r}(1-p)^{n-r}$, Where, $0 , r = 0,1,2,,n,$	Binomial Distribution
С		Confidence level	$c = P(-Z_c < Normal(0,1) < Z_c)$	Confidence interval
ⁿ Cr	n-c-r	Combinations (number of combinations of n objects taken r at a time)	${}^{n}c_{r} = \frac{n!}{r!(n-r)!}, \text{ where } n \geq r$	

Symbol	Text Equivalent	Meaning	Formula	Link to Glossary (if appropriate)
C _{n,r}	n-c-r	Combinations (number of combinations of n objects taken r at a time)	$C_{n,r} = \frac{n!}{r!(n-r)!}$, where $n \ge r$	
Cov(X,Y)	Covariance between X and Y	Covariance between X & Y	Cov(X) = E[(X - E(X))(Y - E(Y))]	
CV		Coefficient of variation	$CV = \frac{Standard Deviation}{Arithmetic mean}$	
df		Degree(s) of freedom		
E		Maximal error tolerance	$E = z_c \frac{\sigma}{\sqrt{n}}$ for large samples	
E (f(x))	Expected value of f(x)		$E(f(x)) = \sum f(x)P(x)$	
f		Frequency	f = number of times score.	
F		F-distribution variable	$F = \frac{\frac{x_{1/n_{1}}^{2}}{x_{2/n_{2}}^{2}}$ where n ₁ and n ₂ are the corresponding degrees of freedom.	<u>F-</u> <u>distribution</u> , Hypothesis testing for equality of 2 variances.
F (x) Or F _x		Distribution function	$F_{\rm X} = \int_{-\infty}^{\rm x} f_{\rm x} d{\rm x}$	
f(x) or f_x		Probability mass function	Depends on the distribution. $f_x \ge 0 \& \int_x f_x dx = 1$	
H _o	H-naught	Null hypothesis	The null hypothesis is the hypothesis about the population parameter.	<u>Testing of</u> hypothesis

Symbol	Text Equivalent	Meaning	Formula	Link to Glossary (if appropriate)
H ₁	H-one	Alternate hypothesis	An alternate hypothesis is constructed in such a way that it is the one to be accepted when the null hypothesis must be rejected.	<u>Testing of</u> hypothesis
IQR		Interquartile range	$IQR = Q_3 - Q_1$	Measures of central tendency.
MS	M-S	Mean square	$MS = \frac{SS}{df}$	Analysis of variance (ANOVA)
n		Sample size.	n = number of units in a sample.	
N		Population size	N = Number of units in the population.	
P _{n,r}	n-p-r	Permutation (number of ways to arrange in order n distinct objects taking them r at a time)	$P_{n,r} = \frac{n!}{(n-r)!}$ where $n \ge r$	
_n P _r	n-p-r	Permutation (number of ways to arrange in order n distinct objects taking them r at a time)	$_{n}P_{r} = \frac{n!}{(n-r)!}$, where $n \ge r$	
p	p-hat	Sample proportion	$\hat{p} = \frac{\text{number of success}}{\text{number of trials}}$	Binomial distribution
P(A B)	Probability of A given B	Conditional probability	$P(A B) = \frac{P(A \cap B)}{P(B)}$	
P(x)	Probability of x	Probability of x	$P(x) = \frac{No.offavorable outcomes}{Total no. of outcomes}$	
p-value		The attained	P value is the smallest level of	

Symbol	Text Equivalent	Meaning	Formula	Link to Glossary (if appropriate)
		level of significance.	significance for which the observed sample statistic tells us to reject the null hypothesis.	
Q		Probability of not happening of the event	q = 1 - p	
Q ₁	Q-one	First quartile	Q1 = Median of the lower half of the data that is data below median.	Measures of central tendency
Q ₂	Q-two	Second quartile Or Median	Q2 = Central value of an ordered data.	Measures of central tendency
Q ₃	Q-three	Third quartile	Q3 = Median of the upper half of the data that is data above the median.	Measures of central tendency
R		Sample Correlation coefficient	$r = \frac{Co \text{ variance}(X,Y)}{[SD(X)]*[SD(Y)]}$	
r ²	r-square	Coefficient of determination	$r^2 = (Correlation coefficient)^2$	
R ²	r-square	Multiple correlation coefficient	$R^2 = 1 - \frac{\text{mean square error}}{s_y^2}$	
S		Sample standard deviation	$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n-1}}$ for ungrouped data. $s = \sqrt{\frac{\sum f(x - \bar{x})^2}{(\sum f) - 1}}$ for grouped data.	<u>Measures</u> of dispersion
S ²	S-square	Sample variance	$S^{2} = \frac{\sum (x - \bar{x})^{2}}{n-1}$ for ungrouped data. $S^{2} = \frac{\sum f(x - \bar{x})^{2}}{(\sum f)^{-1}}$ for grouped data.	<u>Measures</u> of dispersion
S _e ²	s-e- square	Error variance	$S_e^2 = \frac{\text{sum of squares of residuals}}{n}$	

Symbol	Text Equivalent	Meaning	Formula	Link to Glossary (if appropriate)
SD		Sample Standard deviation	$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n-1}}$ for ungrouped data. $s = \sqrt{\frac{\sum f(x - \bar{x})^2}{(\sum f) - 1}}$ for grouped data.	
sk _b		Bowley's coefficient of skewness	$sk_{b} = \frac{(Q_{B} - Q_{2}) - (Q_{2} - Q_{1})}{Q_{B} - Q_{1}}$	Measures of skew ness
sk _p		Pearson's coefficient of skewness	$sk_p = \frac{Mean-Mode}{Standard Deviation}$	<u>Measures</u> of skew ness
SS _x		Sum of squares	$\begin{split} & \text{SS}_{\text{x}} = \sum (x - \bar{x})^2 \text{ for ungrouped data} \\ & \text{SS}_{\text{x}} = \sum f(x - \bar{x})^2 \text{ for grouped data} \end{split}$	
t		Student's t variable	$t = \frac{Normal(0,1)}{\sqrt{\chi_n^2/n}}$	<u>t-</u> distribution
t _c	t critical	The critical value for a confidence level c.	t_{c} = Number such that the area under the t distribution for a given number of degrees of freedom falling between $-t_{c}$ and t_{c} is equal to c.	<u>Testing of</u> hypothesis
Var(X)	Variance of X	Variance of X	$Var(X) = E(X - \mu)^2$	
X		Independent variable or explanatory variable in regression analysis	Eg. In the study of, yield obtained & the irrigation level, independent variable is, $\mathbf{X} =$ Irrigation level.	
x	x-bar	Arithmetic mean or Average of X scores.	$\bar{\mathbf{x}} = \frac{\Sigma \mathbf{x}}{n}$ for ungrouped data. $\bar{\mathbf{x}} = \frac{\Sigma \mathbf{f} \mathbf{x}}{\Sigma \mathbf{f}}$ for grouped data	Measures of central tendency
У		Dependent variable or response	Eg. In the study of, yield obtained & the irrigation level, dependent variable is, $\mathbf{Y} = \mathbf{Y}$ ield obtained.	

Symbol	Text Equivalent	Meaning	Formula	Link to Glossary (if appropriate)
		variable in regression analysis		
Z	Z-score	Standard normal variable (Normal variable with mean = 0 & SD = 1)	$z = \frac{X-\mu}{\sigma}$, where X follows Normal (μ, σ) .	<u>Standard</u> <u>normal</u> <u>distribution</u>
Zc	z critical	The critical value for a confidence level c.	$z_{c} =$ Number such that the area under the standard normal curve falling between $-z_{c}$ and z_{c} is equal to c.	Testing of hypothesis Confidence interval

Greek Statistical Symbols

Symbol	Text Equivalent	Meaning	Formula	Link to Glossary (if appropriate)
x	Alpha	Type I error or Level of Significance	$\mathbf{x} = \mathbf{P}$ [Rejecting the null hypothesis Null hypothesis is true].	<u>Hypothesis</u> <u>Testing</u>
β	Beta	Type II error or Power of the test	$\beta = P$ [Accepting the null hypothesis Null hypothesis is False].	<u>Hypothesis</u> <u>Testing</u>
E	Epsilon	"Error Term" in regression/statistics; more generally used to denote an arbitrarily small positive number	$y = \beta_0 + \beta_1 * x + \varepsilon$	Regression
χ ²	Chi-square	Chi-square distribution	$\chi^2 =$ Sum of n independent Standard normal variables	Chi-square distribution

Symbol	Text Equivalent	Meaning	Formula	Link to Glossary (if appropriate)
χ²	Chi-square	Chi-square distribution	$\chi^{2} = \sum \frac{(O-E)^{2}}{E}$ where O is the observed frequency and E is the expected frequency. Or $\chi^{2} = \frac{(n-1)s^{2}}{\sigma^{2}}$ (?)	<u>Goodness</u> of fit test
Г _(n)	Gamma-n	Gamma function	$\Gamma(n) = (n-1)!$	
λ	Lambda	Parameter used for Poisson distribution	$\lambda = Mean of Poisson distribution$	Poisson distribution
μ	Mu	Arithmetic mean or Average of the population	$\begin{split} \mu &= \frac{\sum x}{N} \\ \mu &= E(X) = \sum x P(x) \end{split}$	
μ	Mu-r	r th central moment	$\mu_{\rm r} = E[(X - \mu)^{\rm r}]$	Measures of central tendency.
$\mu_{\mathbf{r}}'$	Mu-r-dash	r th Raw moment	$\mu_{\rm r}'=E(X^{\rm r})$	<u>Measures</u> of central tendency.
ρ	Rho	Population correlation coefficient	$\rho = \frac{\text{Covariance}(X, Y)}{\text{SD}(X) * \text{SD}(Y)}$	
Σ	Sigma	Summation	$\Sigma \mathbf{x} = $ Sum of x scores	
σ	Sigma	Population standard Deviation	$\sigma = \sqrt{\frac{\sum (x-\mu)^2}{N}}$ $\sigma = \sqrt{E[(X-\mu)^2]}$ $= \sqrt{\sum (x-\mu)^2 P(x)}$	<u>Measures</u> of dispersion
σ^2	Sigma square	Population variance	$\sigma^2 = \frac{\sum (x - \mu)^2}{N}$	<u>Measures</u> of dispersion

Mathematical Statistical Symbols

Symbol	Text Equivalent	Meaning	Formula	Link to Glossary (if appropriate)
!	Factorial	Product of all integers up to the given number	$n! = n(n - 1)(n - 2) \dots 1_{n}$ 0! = 1	
с	Complement	not	For example: ^{A^c} is not ^A	
U	Union	or	For example: (A U B) is happening of either event A or event B.	
Λ	Intersection	And	For example: $(A \cap B)$ is happening of both event A and event B.	